Let's make a few substitutions to understand the properties of the desired sequence.
"T(n)=2T\\left(n\/2\\right)+n-1\\longrightarrow\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\nn\\to n\/2 :\\quad T\\left(n\/2\\right)=2T\\left(n\/4\\right)+n\/2-1\\\\[0.3cm]\nn\\to n\/4 :\\quad T\\left(n\/4\\right)=2T\\left(n\/8\\right)+n\/4-1\\\\[0.3cm]\nn\\to n\/8 :\\quad T\\left(n\/8\\right)=2T\\left(n\/16\\right)+n\/8-1\\\\[0.3cm]\nn\\to n\/16 :\\quad T\\left(n\/16\\right)=2T\\left(n\/32\\right)+n\/16-1\n\\end{array}\\right."
To move forward, we need to understand how "T(n)" is expressed through "T(n\/2),\\,\\,\\,T(n\/4),\\ldots" Therefore,
"\\boxed{T(n)=2^1\\cdot T\\left(\\frac{n}{2^1}\\right)+1\\cdot n-\\underbrace{1}_{=2^0}}\\longrightarrow\\\\[0.3cm]\nT(n)=2\\cdot\\left(2\\cdot T\\left(\\frac{n}{4}\\right)+n\/2-1\\right)+1\\cdot n-1=\\\\[0.3cm]\n=4\\cdot T\\left(\\frac{n}{4}\\right)+1\\cdot n-2+1\\cdot n-1\\longrightarrow\\\\[0.3cm]\n\\boxed{T(n)=2^2\\cdot T\\left(\\frac{n}{2^2}\\right)+2\\cdot n-\\left(2^0+2^1\\right)}\\\\[0.3cm]\nT(n)=4\\cdot\\left(2\\cdot T\\left(\\frac{n}{8}\\right)+n\/4-1\\right)+2\\cdot n-\\left(1+2\\right)=\\\\[0.3cm]\n=8\\cdot T\\left(\\frac{n}{8}\\right)+n-4+2\\cdot n-\\left(1+2\\right)\\longrightarrow\\\\[0.3cm]\n\\boxed{T(n)=2^3\\cdot T\\left(\\frac{n}{2^3}\\right)+3\\cdot n-\\left(2^0+2^1+2^2\\right)}\\\\[0.3cm]\nT(n)=8\\cdot\\left(2\\cdot T\\left(\\frac{n}{16}\\right)+n\/8-1\\right)+3\\cdot n-\\left(2^0+2^1+2^2\\right)=\\\\[0.3cm]\n=16\\cdot T\\left(\\frac{n}{16}\\right)+n-8+3\\cdot n-\\left(2^0+2^1+2^2\\right)\\longrightarrow\\\\[0.3cm]\n\\boxed{T(n)=2^4\\cdot T\\left(\\frac{n}{2^4}\\right)+4n-\\left(2^0+2^1+2^2+2^3\\right)}\\\\[0.3cm]\nT(n)=16\\cdot\\left(2\\cdot T\\left(\\frac{n}{32}\\right)+n\/16-1\\right)+4\\cdot n-\\left(2^0+2^1+2^2+2^3\\right)=\\\\[0.3cm]\n=32\\cdot T\\left(\\frac{n}{32}\\right)+n-16+4\\cdot n-\\left(2^0+2^1+2^2+2^3\\right)\\longrightarrow\\\\[0.3cm]\n\\boxed{T(n)=2^5\\cdot T\\left(\\frac{n}{2^5}\\right)+5n-\\left(2^0+2^1+2^2+2^3+2^4\\right)}\\\\[0.3cm]"
Making a proposal for a general formula :
"\\boxed{T(n)=2^p\\cdot T\\left(\\frac{n}{2^p}\\right)+np-\\left(2^0+2^1+2^2+\\ldots+2^{p-1}\\right)}"
It remains to calculate the sum in brackets, which is a geometric sum with the following parameters: "a_1=1" , "r=2" , the number of items in the sum "0\\ldots(p-1)\\to \\text{Number}=p" , then
"2^0+2^1+2^2+\\ldots+2^{p-1}=\\frac{a_1\\cdot\\left(r^p-1\\right)}{r-1}=\\frac{2^p-1}{2-1}\\longrightarrow\\\\[0.3cm]\n\\boxed{2^0+2^1+2^2+\\ldots+2^{p-1}=2^p-1}"
Conclusion,
"T(n)=2^p\\cdot T\\left(\\frac{n}{2^p}\\right)+np-\\left(2^p-1\\right)"
It remains to use the initial condition :
"\\frac{n}{2^p}=1\\to n=2^p\\to\\boxed{ p=\\log_2n}"
Then,
"T(n)=\\underbrace{2^{\\log_2n}}_{=n}\\cdot T(1)+n\\cdot\\log_2n-\\left(\\underbrace{2^{\\log_2n}}_{=n}-1\\right)\\longrightarrow\\\\[0.3cm]\nT(n)=n\\cdot1+n\\cdot\\log_2n-(n-1)\\longrightarrow\\\\[0.3cm]\n\\boxed{T(n)=n\\cdot\\log_2n+1+O\\left(n\\cdot\\log_2n\\right)}"
ANSWER
"T(n)=2T\\left(n\/2\\right)+n-1\\longrightarrow\\\\[0.3cm]\nT(n)=n\\cdot\\log_2n+1+O\\left(n\\cdot\\log_2n\\right)"
Comments
Leave a comment