Answer to Question #224080 in Discrete Mathematics for sabelo Zwelakhe

Question #224080

Let f:A"\\to" B and g:B"\\to" C be functions. Show that if g o f is onto, then g is onto


1
Expert's answer
2021-08-09T16:21:38-0400

"solution\\\\\ngiven:- \\space \\space f:A\\to \\space B \\space and \\space g:B\\to \\space C \\space be \\space functions.\\\\\nproof \\space that:- \\space if \\space gof \\space is \\space onto, \\space then \\space g \\space is \\space onto.\\\\\n\nproof:- \\space we \\space will \\space be \\space show \\space that \\space g \\space is \\space onto \\space \\\\\nin \\space other \\space word \\space , \\space g:B \\space \\to \\space C \\space is \\space onto \\space (every \\space element \\space in \\space C \\space has \\space preimage \\space in \\space B)\\\\\nlet \\space z \\space \\isin \\space C \\space , \\space there \\space exists \\space y \\space \\isin \\space A \\space (becouse \\space gof \\space is \\space onto)\\\\\nsuch \\space that \\space \\\\\ngof(y)=z\\\\\ng[f(y)]=z\\\\\ng(x)=z \\space (because \\space f:A \\space \\to \\space B \\space , \\space y\\isin \\space A \\space , \\space f(y)=x \\space \\isin \\space B \\space )\\\\\nthus \\space for \\space every \\space element \\space z \\space \\isin \\space C \\space , \\space there \\space exit \\space x \\space \\isin \\space B, \\space such \\space that \\space g(x)=z\\\\\ng \\space is \\space onto \\space \\\\"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS