Solve the equation logxe2e = eInx-e
2elne/lnx=elnx−e2elne/lnx=elnx-e2elne/lnx=elnx−e
2=ln2x−lnx2=ln^2x-lnx2=ln2x−lnx
k=lnxk=lnxk=lnx
k2−k−2=0k^2-k-2=0k2−k−2=0
k1=1+1+82=2k_1=\frac{1+\sqrt{1+8}}{2}=2k1=21+1+8=2
k2=1−1+82=−1k_2=\frac{1-\sqrt{1+8}}{2}=-1k2=21−1+8=−1
lnx1=2lnx_1=2lnx1=2
x1=e2x_1=e^2x1=e2
lnx2=−1lnx_2=-1lnx2=−1
x2=1/ex_2=1/ex2=1/e
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments