Given the following recurrence relation (M).
an = −4an−1 + 5an−2, a0 = 2, a1 = 8
The solution of (M) is:
a. an = 3 − (−5)
n
b. an = 3 + (5)
c. an = (3)
n − 5
d. None of these
Characteristic equation:
k2+4k−5=0{k^2} + 4k - 5 = 0k2+4k−5=0
D=16+20=36D = 16 + 20 = 36D=16+20=36
k1=−4−62=−5{k_1} = \frac{{ - 4 - 6}}{2} = - 5k1=2−4−6=−5
k2=−4+62=1{k_2} = \frac{{ - 4 + 6}}{2} = 1k2=2−4+6=1
Then
an=C1⋅(−5)n+C2⋅1n=C1⋅(−5)n+C2{a_n} = {C_1} \cdot {\left( { - 5} \right)^n} + {C_2} \cdot {1^n} = {C_1} \cdot {\left( { - 5} \right)^n} + {C_2}an=C1⋅(−5)n+C2⋅1n=C1⋅(−5)n+C2
a0=2, a1=8⇒{C1+C2=2−5C1+C2=8⇒C1=−1, C2=3{a_0} = 2,\,{a_1} = 8 \Rightarrow \left\{ {\begin{matrix} {{C_1} + {C_2} = 2}\\ { - 5{C_1} + {C_2} = 8} \end{matrix}} \right. \Rightarrow {C_1} = - 1,\,{C_2} = 3a0=2,a1=8⇒{C1+C2=2−5C1+C2=8⇒C1=−1,C2=3
an=−1⋅(−5)n+3=3−(−5)n{a_n} = - 1 \cdot {\left( { - 5} \right)^n} + 3 = 3 - {\left( { - 5} \right)^n}an=−1⋅(−5)n+3=3−(−5)n
Answer:a. an=3−(−5)n{a_n} = 3 - {\left( { - 5} \right)^n}an=3−(−5)n
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments