Given the following recurrence relation (M).
an = −4an−1 + 5an−2, a0 = 2, a1 = 8
The solution of (M) is:
a. an = 3 − (−5)
n
b. an = 3 + (5)
n
c. an = (3)
n − 5
d. None of these
Characteristic equation:
"{k^2} + 4k - 5 = 0"
"D = 16 + 20 = 36"
"{k_1} = \\frac{{ - 4 - 6}}{2} = - 5"
"{k_2} = \\frac{{ - 4 + 6}}{2} = 1"
Then
"{a_n} = {C_1} \\cdot {\\left( { - 5} \\right)^n} + {C_2} \\cdot {1^n} = {C_1} \\cdot {\\left( { - 5} \\right)^n} + {C_2}"
"{a_0} = 2,\\,{a_1} = 8 \\Rightarrow \\left\\{ {\\begin{matrix}\n{{C_1} + {C_2} = 2}\\\\\n{ - 5{C_1} + {C_2} = 8}\n\\end{matrix}} \\right. \\Rightarrow {C_1} = - 1,\\,{C_2} = 3"
Then
"{a_n} = - 1 \\cdot {\\left( { - 5} \\right)^n} + 3 = 3 - {\\left( { - 5} \\right)^n}"
Answer:a. "{a_n} = 3 - {\\left( { - 5} \\right)^n}"
Comments
Leave a comment