Using the method of telescopic sums, solve
the recurrence relation : (n+1)xn-nxn-1-n/2,x0=10,n≥1
"(n+1)x_n-nx_{n-1}=n\/2"
Let "nx_{n-1}=y_n". Then "y_{n+1}-y_n=n\/2" and "y_1=x_0=10".
"y_n=(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\\dots+(y_2-y_1)+y_1="
"=\\frac{n-1}{2}+\\frac{n-2}{2}++\\dots+\\frac{1}{2}+10=10+\\frac{n(n-1)}{4}"
"x_{n-1}=y_n\/n=\\frac{10}{n}+\\frac{n-1}{4}"
"x_n=\\frac{10}{n+1}+\\frac{n}{4}"
Check the solution:
"x_0=\\frac{10}{0+1}+\\frac{0}{4}=10"
"(n+1)x_n-nx_{n-1}=(n+1)(\\frac{10}{n+1}+\\frac{n}{4})-n(\\frac{10}{n}+\\frac{n-1}{4})="
"10+\\frac{n(n+1)}{4}-(10+\\frac{n(n-1)}{4})=n\/2"
Comments
Leave a comment