Question #221946

Using the method of telescopic sums, solve 

the recurrence relation : (n+1)xn-nxn-1-n/2,x0=10,n≥1


1
Expert's answer
2021-08-03T07:06:17-0400

(n+1)xnnxn1=n/2(n+1)x_n-nx_{n-1}=n/2

Let nxn1=ynnx_{n-1}=y_n. Then yn+1yn=n/2y_{n+1}-y_n=n/2 and y1=x0=10y_1=x_0=10.

yn=(ynyn1)+(yn1yn2)++(y2y1)+y1=y_n=(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\dots+(y_2-y_1)+y_1=

=n12+n22+++12+10=10+n(n1)4=\frac{n-1}{2}+\frac{n-2}{2}++\dots+\frac{1}{2}+10=10+\frac{n(n-1)}{4}

xn1=yn/n=10n+n14x_{n-1}=y_n/n=\frac{10}{n}+\frac{n-1}{4}

xn=10n+1+n4x_n=\frac{10}{n+1}+\frac{n}{4}

Check the solution:

x0=100+1+04=10x_0=\frac{10}{0+1}+\frac{0}{4}=10

(n+1)xnnxn1=(n+1)(10n+1+n4)n(10n+n14)=(n+1)x_n-nx_{n-1}=(n+1)(\frac{10}{n+1}+\frac{n}{4})-n(\frac{10}{n}+\frac{n-1}{4})=

10+n(n+1)4(10+n(n1)4)=n/210+\frac{n(n+1)}{4}-(10+\frac{n(n-1)}{4})=n/2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS