(n+1)xn−nxn−1=n/2
Let nxn−1=yn. Then yn+1−yn=n/2 and y1=x0=10.
yn=(yn−yn−1)+(yn−1−yn−2)+⋯+(y2−y1)+y1=
=2n−1+2n−2++⋯+21+10=10+4n(n−1)
xn−1=yn/n=n10+4n−1
xn=n+110+4n
Check the solution:
x0=0+110+40=10
(n+1)xn−nxn−1=(n+1)(n+110+4n)−n(n10+4n−1)=
10+4n(n+1)−(10+4n(n−1))=n/2
Comments