Show that ¬ (P"\\iff"Q)"\\iff"(P V Q) Λ ¬(P Λ Q) "\\iff"(P Λ ¬Q) V (¬ P Λ Q) without using truth table
Since
"\\neg \\left( {P \\leftrightarrow Q} \\right) \\equiv \\neg \\left( {\\left( {P \\to Q} \\right) \\wedge \\left( {Q \\to P} \\right)} \\right) \\equiv \\neg \\left( {\\left( {\\neg P \\vee Q} \\right) \\wedge \\left( {\\neg Q \\vee P} \\right)} \\right) \\equiv \\neg \\left( {\\neg P \\vee Q} \\right) \\vee \\neg \\left( {\\neg Q \\vee P} \\right) \\equiv \\left( {P \\wedge \\neg Q} \\right) \\vee \\left( {Q \\wedge \\neg P} \\right)"
Then
"\\neg \\left( {P \\leftrightarrow Q} \\right) \\leftrightarrow \\left( {P \\wedge \\neg Q} \\right) \\vee \\left( {\\neg P \\wedge Q} \\right)"
Since
"\\left( {P \\wedge \\neg Q} \\right) \\vee \\left( {\\neg P \\wedge Q} \\right) \\equiv \\left( {P \\vee \\neg P} \\right) \\wedge \\left( {\\neg Q \\vee \\neg P} \\right) \\wedge \\left( {P \\vee Q} \\right) \\wedge \\left( {\\neg Q \\vee Q} \\right) \\equiv 1 \\wedge \\left( {\\neg Q \\vee \\neg P} \\right) \\wedge \\left( {P \\vee Q} \\right) \\wedge 1 \\equiv \\left( {\\neg Q \\vee \\neg P} \\right) \\wedge \\left( {P \\vee Q} \\right) \\equiv \\left( {P \\vee Q} \\right) \\wedge \\neg \\left( {P \\wedge Q} \\right)"
Then
"\\left( {P \\wedge \\neg Q} \\right) \\vee \\left( {\\neg P \\wedge Q} \\right) \\leftrightarrow \\left( {P \\vee Q} \\right) \\wedge \\neg \\left( {P \\wedge Q} \\right)"
But then
"\\neg \\left( {P \\leftrightarrow Q} \\right) \\leftrightarrow \\left( {P \\vee Q} \\right) \\wedge \\neg \\left( {P \\wedge Q} \\right) \\leftrightarrow \\left( {P \\wedge \\neg Q} \\right) \\vee \\left( {\\neg P \\wedge Q} \\right)"
Q. E. D.
Comments
Leave a comment