Find the generating function of recurrence relation an+1_an=3n ,n less than 0 where ao=1
We have the recurrence relation "a_{n+1}-a_n=3n", for n less than 0, where "a_0=1".
Let's consider the sequence "b_m=a_{-m}", "m=-n", such that "m\\in\\mathbb{N}\\cup\\{0\\}". Then
"a_{n+1}-a_n=a_{-m+1}-a_{-m}=b_{m-1}-b_m=3n=-3m", or "b_m-b_{m-1}=3m".
"b_m=(b_m-b_{m-1})+(b_{m-1}-b_{m-2})+\\dots+(b_1-b_0)+b_0"
"=3m+3(m-1)+\\dots+3+b_0=\\frac{3}{2}m(m+1)+1"
The generating function of the sequence "a_n" is
"f(z)=\\sum\\limits_{n=-\\infty}^0a_nz^n=\\sum\\limits_{m=0}^{+\\infty}b_mz^{-m}="
"\\sum\\limits_{m=0}^{+\\infty}\\left(\\frac{3}{2}m(m+1)+1\\right)z^{-m}=\\sum\\limits_{m=0}^{+\\infty}z^{-m}+\\frac{3}{2}\\sum\\limits_{m=0}^{+\\infty}m(m+1)z^{-m}"
"=\\frac{1}{1-z^{-1}}+\\frac{3}{2}z^2\\frac{d^2}{dz^2}\\sum\\limits_{m=0}^{+\\infty}z^{-m}=\\frac{1}{1-z^{-1}}+\\frac{3}{2}z^2\\frac{d^2}{dz^2}\\frac{1}{1-z^{-1}}"
"=\\frac{1}{1-z^{-1}}+3\\frac{z^2}{(z-1)^3}=\\frac{1}{1-z^{-1}}+\\frac{3z^{-1}}{(1-z^{-1})^3}"
Answer. The generating function of the sequence "a_n" is "f(z)=\\frac{1}{1-z^{-1}}+\\frac{3z^{-1}}{(1-z^{-1})^3}".
Comments
Leave a comment