Question #218197

Find the generating function of recurrence relation an+1_an=3n ,n less than 0 where ao=1


1
Expert's answer
2022-02-01T17:26:20-0500

We have the recurrence relation an+1an=3na_{n+1}-a_n=3n, for n less than 0, where a0=1a_0=1.

Let's consider the sequence bm=amb_m=a_{-m}, m=nm=-n, such that mN{0}m\in\mathbb{N}\cup\{0\}. Then

an+1an=am+1am=bm1bm=3n=3ma_{n+1}-a_n=a_{-m+1}-a_{-m}=b_{m-1}-b_m=3n=-3m, or bmbm1=3mb_m-b_{m-1}=3m.

bm=(bmbm1)+(bm1bm2)++(b1b0)+b0b_m=(b_m-b_{m-1})+(b_{m-1}-b_{m-2})+\dots+(b_1-b_0)+b_0

=3m+3(m1)++3+b0=32m(m+1)+1=3m+3(m-1)+\dots+3+b_0=\frac{3}{2}m(m+1)+1

The generating function of the sequence ana_n is

f(z)=n=0anzn=m=0+bmzm=f(z)=\sum\limits_{n=-\infty}^0a_nz^n=\sum\limits_{m=0}^{+\infty}b_mz^{-m}=

m=0+(32m(m+1)+1)zm=m=0+zm+32m=0+m(m+1)zm\sum\limits_{m=0}^{+\infty}\left(\frac{3}{2}m(m+1)+1\right)z^{-m}=\sum\limits_{m=0}^{+\infty}z^{-m}+\frac{3}{2}\sum\limits_{m=0}^{+\infty}m(m+1)z^{-m}

=11z1+32z2d2dz2m=0+zm=11z1+32z2d2dz211z1=\frac{1}{1-z^{-1}}+\frac{3}{2}z^2\frac{d^2}{dz^2}\sum\limits_{m=0}^{+\infty}z^{-m}=\frac{1}{1-z^{-1}}+\frac{3}{2}z^2\frac{d^2}{dz^2}\frac{1}{1-z^{-1}}

=11z1+3z2(z1)3=11z1+3z1(1z1)3=\frac{1}{1-z^{-1}}+3\frac{z^2}{(z-1)^3}=\frac{1}{1-z^{-1}}+\frac{3z^{-1}}{(1-z^{-1})^3}


Answer. The generating function of the sequence ana_n is f(z)=11z1+3z1(1z1)3f(z)=\frac{1}{1-z^{-1}}+\frac{3z^{-1}}{(1-z^{-1})^3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS