For any natural number n, prove the validity of given series by mathematical induction:
2(√(n+1)-1)<1+(1/√2)+⋯..+(1/√n)<2√n?
"2\\left( \\sqrt{n+1}-1\n\\right)<1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{n}}<2\\sqrt{n}"
Base Case: "n=1"
"2\\left(\\sqrt{2}-1\\right)<1<2"
"\\sqrt{2}-1<\\tfrac{1}{2}<1"
"\\sqrt{2}\\approx 1.414<1.5<2"
Assume: "2\\left( \\sqrt{k+1}-1\n\\right)<1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k}}<2\\sqrt{k}"
Prove: "2\\left( \\sqrt{k+2}-1\n\\right)<1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k+1}}<2\\sqrt{k+1}"
1) "1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k}}+\\tfrac{1}{\\sqrt{k+1}}<2\\sqrt{k}+\\tfrac{1}{\\sqrt{k+1}}=\\frac{2\\sqrt{k(k+1)}+1}{\\sqrt{k+1}}"
Using inequality "\\sqrt{xy}\\leq \\frac{x+y}{2}" , we get "\\frac{2\\sqrt{k(k+1)}+1}{\\sqrt{k+1}}\\leq \\frac{(2k+1)+1}{\\sqrt{k+1}}=2\\sqrt{k+1}"
Therefore, "1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k+1}}<2\\sqrt{k+1}"
2) "1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k}}+\\tfrac{1}{\\sqrt{k+1}}>2\\left(\\sqrt{k+1}-1\\right)+\\tfrac{1}{\\sqrt{k+1}}=\\frac{2(k+1)+1}{\\sqrt{k+1}}-2=\\frac{2k+3}{\\sqrt{k+1}}-2"
Using inequality "\\sqrt{xy}\\leq \\frac{x+y}{2}" , we get "\\sqrt{(k+1)(k+2)}\\leq \\frac{2k+3}{2}" .
So, "2\\sqrt{k+2}\\leq \\frac{2k+3}{\\sqrt{k+1}}" .
Therefore, "1+\\tfrac{1}{\\sqrt{2}}+\u2026+\\tfrac{1}{\\sqrt{k+1}}>2\\sqrt{k+2}-2=2\\left(\\sqrt{k+2}-1\\right)"
Comments
Leave a comment