Question 5:Â By using the rules of logical equivalences, show the propositions are logically equivalent:
a)                 Determine whether (p → (q → r)) → (p ˄ q) → r) is Tautology.
b)                 (p ∧ q) ∧ [(q ∧ ¬r) ∨ (p ∧ r)] and ¬(p → ¬q).
c)                 [(p v q) /\ (p → r) /\ (q → r)] →r is Tautology.
Â
a) "\\left( {p \\to \\left( {q \\to r} \\right)} \\right) \\to \\left( {\\left( {p \\wedge q} \\right) \\to r} \\right) = \\overline {\\left( {p \\to \\left( {q \\to r} \\right)} \\right)} \\vee \\left( {\\left( {p \\wedge q} \\right) \\to r} \\right) = \\overline {\\left( {\\overline p \\vee \\left( {q \\to r} \\right)} \\right)} \\vee \\left( {\\overline {\\left( {p \\wedge q} \\right)} \\vee r} \\right) = \\overline {\\left( {\\overline p \\vee \\left( {\\overline q \\vee r} \\right)} \\right)} \\vee \\left( {\\overline {\\left( {p \\wedge q} \\right)} \\vee r} \\right) = \\overline {\\left( {\\overline p \\vee \\overline q \\vee r} \\right)} \\vee \\left( {\\overline p \\vee \\overline q \\vee r} \\right) = p \\wedge q \\wedge \\overline r \\vee \\overline p \\vee \\overline q \\vee r = \\left( {p \\vee \\overline p \\vee \\overline q \\vee r} \\right) \\wedge \\left( {q \\vee \\overline p \\vee \\overline q \\vee r} \\right) \\wedge \\left( {\\overline r \\vee \\overline p \\vee \\overline q \\vee r} \\right) = \\left( {T \\vee \\overline q \\vee r} \\right) \\wedge \\left( {T \\vee \\overline p \\vee r} \\right) \\wedge \\left( {T \\vee \\overline p \\vee \\overline q } \\right) = T \\wedge T \\wedge T = T"
Q. E. D.
b) 1) "\\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\wedge \\neg r} \\right) \\vee \\left( {p \\wedge r} \\right)} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\vee p} \\right) \\wedge \\left( {q \\vee r} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) \\wedge \\left( {\\neg r \\vee r} \\right)} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\vee p} \\right) \\wedge \\left( {q \\vee r} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) \\wedge T} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\vee p} \\right) \\wedge \\left( {q \\vee r} \\right) \\wedge \\left( {\\neg r \\vee p} \\right)} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {q \\vee \\left( {p \\wedge r} \\right)} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) = \\left( {\\left( {p \\wedge q \\wedge q} \\right) \\vee \\left( {p \\wedge q \\wedge p \\wedge r} \\right)} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) = \\left( {\\left( {p \\wedge q} \\right) \\vee \\left( {p \\wedge q \\wedge r} \\right)} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {T \\vee r} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) = \\left( {p \\wedge q} \\right) \\wedge T \\wedge \\left( {\\neg r \\vee p} \\right) = \\left( {p \\wedge q} \\right) \\wedge \\left( {\\neg r \\vee p} \\right) = p \\wedge q \\wedge \\neg r \\vee p \\wedge q \\wedge p = p \\wedge q \\wedge \\neg r \\vee p \\wedge q = p \\wedge q \\wedge \\left( {\\neg r \\vee T} \\right) = p \\wedge q \\wedge T = p \\wedge q"
2) "\\neg \\left( {p \\to \\neg q} \\right) = \\neg \\left( {\\neg p \\vee \\neg q} \\right) = \\neg \\neg p \\wedge \\neg \\neg q = p \\wedge q"
So, "\\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\wedge \\neg r} \\right) \\vee \\left( {p \\wedge r} \\right)} \\right) = p \\wedge q" and "\\neg \\left( {p \\to \\neg q} \\right) = p \\wedge q"
Then
"\\left( {p \\wedge q} \\right) \\wedge \\left( {\\left( {q \\wedge \\neg r} \\right) \\vee \\left( {p \\wedge r} \\right)} \\right) = \\neg \\left( {p \\to \\neg q} \\right)"
Q. E. D.
c) "\\left( {\\left( {p \\vee q} \\right) \\wedge \\left( {p \\to r} \\right) \\wedge \\left( {q \\to r} \\right)} \\right) \\to r = \\overline {\\left( {\\left( {p \\vee q} \\right) \\wedge \\left( {p \\to r} \\right) \\wedge \\left( {q \\to r} \\right)} \\right)} \\vee r = \\overline {\\left( {p \\vee q} \\right)} \\vee \\overline {\\left( {p \\to r} \\right)} \\vee \\overline {\\left( {q \\to r} \\right)} \\vee r = \\overline {\\left( {p \\vee q} \\right)} \\vee \\overline {\\left( {\\overline p \\vee r} \\right)} \\vee \\overline {\\left( {\\overline q \\vee r} \\right)} \\vee r = \\left( {\\overline p \\wedge \\overline q } \\right) \\vee \\left( {p \\wedge \\overline r } \\right) \\vee \\left( {q \\wedge \\overline r } \\right) \\vee r = \\left( {\\overline p \\wedge \\overline q } \\right) \\vee \\overline r \\wedge \\left( {p \\vee q} \\right) \\vee r = \\overline {\\left( {p \\vee q} \\right)} \\vee \\overline r \\wedge \\left( {p \\vee q} \\right) \\vee r = \\left( {\\overline {\\left( {p \\vee q} \\right)} \\vee \\overline r } \\right) \\wedge \\left( {\\overline {\\left( {p \\vee q} \\right)} \\vee \\left( {p \\vee q} \\right)} \\right) \\vee r = \\left( {\\overline {\\left( {p \\vee q} \\right)} \\vee \\overline r } \\right) \\wedge T \\vee r = \\left( {\\overline {\\left( {p \\vee q} \\right)} \\vee \\overline r } \\right) \\vee r = \\overline {\\left( {p \\vee q} \\right)} \\vee \\overline r \\vee r = \\overline {\\left( {p \\vee q} \\right)} \\vee T = T"
Q. E. D.
Comments
Leave a comment