Question #217542

Question 5: By using the rules of logical equivalences, show the propositions are logically equivalent:

a)                 Determine whether (p → (q → r)) → (p ˄ q) r) is Tautology.

b)                 (p ∧ q) ∧ [(q ∧ ¬r) ∨ (p ∧ r)] and ¬(p → ¬q).

c)                 [(p v q) /\ (p → r) /\ (q → r)] →r is Tautology.

 


1
Expert's answer
2021-07-16T12:29:40-0400

a) (p(qr))((pq)r)=(p(qr))((pq)r)=(p(qr))((pq)r)=(p(qr))((pq)r)=(pqr)(pqr)=pqrpqr=(ppqr)(qpqr)(rpqr)=(Tqr)(Tpr)(Tpq)=TTT=T\left( {p \to \left( {q \to r} \right)} \right) \to \left( {\left( {p \wedge q} \right) \to r} \right) = \overline {\left( {p \to \left( {q \to r} \right)} \right)} \vee \left( {\left( {p \wedge q} \right) \to r} \right) = \overline {\left( {\overline p \vee \left( {q \to r} \right)} \right)} \vee \left( {\overline {\left( {p \wedge q} \right)} \vee r} \right) = \overline {\left( {\overline p \vee \left( {\overline q \vee r} \right)} \right)} \vee \left( {\overline {\left( {p \wedge q} \right)} \vee r} \right) = \overline {\left( {\overline p \vee \overline q \vee r} \right)} \vee \left( {\overline p \vee \overline q \vee r} \right) = p \wedge q \wedge \overline r \vee \overline p \vee \overline q \vee r = \left( {p \vee \overline p \vee \overline q \vee r} \right) \wedge \left( {q \vee \overline p \vee \overline q \vee r} \right) \wedge \left( {\overline r \vee \overline p \vee \overline q \vee r} \right) = \left( {T \vee \overline q \vee r} \right) \wedge \left( {T \vee \overline p \vee r} \right) \wedge \left( {T \vee \overline p \vee \overline q } \right) = T \wedge T \wedge T = T

Q. E. D.

b) 1) (pq)((q¬r)(pr))=(pq)((qp)(qr)(¬rp)(¬rr))=(pq)((qp)(qr)(¬rp)T)=(pq)((qp)(qr)(¬rp))=(pq)(q(pr))(¬rp)=((pqq)(pqpr))(¬rp)=((pq)(pqr))(¬rp)=(pq)(Tr)(¬rp)=(pq)T(¬rp)=(pq)(¬rp)=pq¬rpqp=pq¬rpq=pq(¬rT)=pqT=pq\left( {p \wedge q} \right) \wedge \left( {\left( {q \wedge \neg r} \right) \vee \left( {p \wedge r} \right)} \right) = \left( {p \wedge q} \right) \wedge \left( {\left( {q \vee p} \right) \wedge \left( {q \vee r} \right) \wedge \left( {\neg r \vee p} \right) \wedge \left( {\neg r \vee r} \right)} \right) = \left( {p \wedge q} \right) \wedge \left( {\left( {q \vee p} \right) \wedge \left( {q \vee r} \right) \wedge \left( {\neg r \vee p} \right) \wedge T} \right) = \left( {p \wedge q} \right) \wedge \left( {\left( {q \vee p} \right) \wedge \left( {q \vee r} \right) \wedge \left( {\neg r \vee p} \right)} \right) = \left( {p \wedge q} \right) \wedge \left( {q \vee \left( {p \wedge r} \right)} \right) \wedge \left( {\neg r \vee p} \right) = \left( {\left( {p \wedge q \wedge q} \right) \vee \left( {p \wedge q \wedge p \wedge r} \right)} \right) \wedge \left( {\neg r \vee p} \right) = \left( {\left( {p \wedge q} \right) \vee \left( {p \wedge q \wedge r} \right)} \right) \wedge \left( {\neg r \vee p} \right) = \left( {p \wedge q} \right) \wedge \left( {T \vee r} \right) \wedge \left( {\neg r \vee p} \right) = \left( {p \wedge q} \right) \wedge T \wedge \left( {\neg r \vee p} \right) = \left( {p \wedge q} \right) \wedge \left( {\neg r \vee p} \right) = p \wedge q \wedge \neg r \vee p \wedge q \wedge p = p \wedge q \wedge \neg r \vee p \wedge q = p \wedge q \wedge \left( {\neg r \vee T} \right) = p \wedge q \wedge T = p \wedge q

2) ¬(p¬q)=¬(¬p¬q)=¬¬p¬¬q=pq\neg \left( {p \to \neg q} \right) = \neg \left( {\neg p \vee \neg q} \right) = \neg \neg p \wedge \neg \neg q = p \wedge q

So, (pq)((q¬r)(pr))=pq\left( {p \wedge q} \right) \wedge \left( {\left( {q \wedge \neg r} \right) \vee \left( {p \wedge r} \right)} \right) = p \wedge q and ¬(p¬q)=pq\neg \left( {p \to \neg q} \right) = p \wedge q

Then

(pq)((q¬r)(pr))=¬(p¬q)\left( {p \wedge q} \right) \wedge \left( {\left( {q \wedge \neg r} \right) \vee \left( {p \wedge r} \right)} \right) = \neg \left( {p \to \neg q} \right)

Q. E. D.

c) ((pq)(pr)(qr))r=((pq)(pr)(qr))r=(pq)(pr)(qr)r=(pq)(pr)(qr)r=(pq)(pr)(qr)r=(pq)r(pq)r=(pq)r(pq)r=((pq)r)((pq)(pq))r=((pq)r)Tr=((pq)r)r=(pq)rr=(pq)T=T\left( {\left( {p \vee q} \right) \wedge \left( {p \to r} \right) \wedge \left( {q \to r} \right)} \right) \to r = \overline {\left( {\left( {p \vee q} \right) \wedge \left( {p \to r} \right) \wedge \left( {q \to r} \right)} \right)} \vee r = \overline {\left( {p \vee q} \right)} \vee \overline {\left( {p \to r} \right)} \vee \overline {\left( {q \to r} \right)} \vee r = \overline {\left( {p \vee q} \right)} \vee \overline {\left( {\overline p \vee r} \right)} \vee \overline {\left( {\overline q \vee r} \right)} \vee r = \left( {\overline p \wedge \overline q } \right) \vee \left( {p \wedge \overline r } \right) \vee \left( {q \wedge \overline r } \right) \vee r = \left( {\overline p \wedge \overline q } \right) \vee \overline r \wedge \left( {p \vee q} \right) \vee r = \overline {\left( {p \vee q} \right)} \vee \overline r \wedge \left( {p \vee q} \right) \vee r = \left( {\overline {\left( {p \vee q} \right)} \vee \overline r } \right) \wedge \left( {\overline {\left( {p \vee q} \right)} \vee \left( {p \vee q} \right)} \right) \vee r = \left( {\overline {\left( {p \vee q} \right)} \vee \overline r } \right) \wedge T \vee r = \left( {\overline {\left( {p \vee q} \right)} \vee \overline r } \right) \vee r = \overline {\left( {p \vee q} \right)} \vee \overline r \vee r = \overline {\left( {p \vee q} \right)} \vee T = T

Q. E. D.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS