Show that (p → r) ∨ (q → r) and (p ∧ q) → r are logically equivalent.
"(p \u2192 r) \u2228 (q \u2192 r)"
"\\equiv (\\neg p\\lor r) \\lor (\\neg q\\lor r) \\ \\ \\ \\ \\ \\ \\" (Implication)
"\\equiv \\neg p\\lor r \\lor \\neg q\\lor r \\ \\ \\ \\ \\ \\ \\"
"\\equiv (\\neg p \\lor \\neg q)\\lor r \\ \\ \\ \\ \\ \\ \\" (Distribution)
"\\equiv \\neg ( p\\land q)\\lor r" (De Morgan's Law)
"\\equiv ( p\\land q) \u2192 r" (Implication)
Hence proved ,
"(p \u2192 r) \u2228 (q \u2192 r)" and "( p\\land q) \u2192 r" are logically equivalent.
Comments
Leave a comment