Question #212772

Show that (p → r) ∨ (q → r) and (p ∧ q) → r are logically equivalent. 


1
Expert's answer
2021-07-04T17:07:57-0400

(pr)(qr)(p → r) ∨ (q → r)

\equiv (\neg p\lor r) \lor (\neg q\lor r) \ \ \ \ \ \ \ (Implication)

\equiv \neg p\lor r \lor \neg q\lor r \ \ \ \ \ \ \

\equiv (\neg p \lor \neg q)\lor r \ \ \ \ \ \ \ (Distribution)

¬(pq)r\equiv \neg ( p\land q)\lor r (De Morgan's Law)

(pq)r\equiv ( p\land q) → r (Implication)

Hence proved ,

(pr)(qr)(p → r) ∨ (q → r) and (pq)r( p\land q) → r are logically equivalent.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS