Question #198636

Determine whether ( π‘βˆ¨π‘ž)∧(π‘β†’π‘Ÿ)∧( π‘žβ†’π‘ )β†’π‘Ÿβˆ¨π‘  is a Tautology or a contradiction 


1
Expert's answer
2021-05-26T15:06:56-0400

Let us prove that (π‘βˆ¨π‘ž)∧(π‘β†’π‘Ÿ)∧(π‘žβ†’π‘ )β†’π‘Ÿβˆ¨π‘ ( π‘βˆ¨π‘ž)∧(π‘β†’π‘Ÿ)∧( π‘žβ†’π‘ )β†’π‘Ÿβˆ¨π‘  is a tautology using proof by contraposition. Suppose that the formula is not a tautology. Then there exists (p0,q0,r0,s0)∈{T,F}4(p_0,q_0,r_0,s_0)\in\{T,F\}^4 such that ∣(𝑝0βˆ¨π‘ž0)∧(𝑝0β†’π‘Ÿ0)∧(π‘ž0→𝑠0)β†’π‘Ÿ0βˆ¨π‘ 0∣=F.|( 𝑝_0βˆ¨π‘ž_0)∧(𝑝_0β†’π‘Ÿ_0)∧( π‘ž_0→𝑠_0)β†’π‘Ÿ_0βˆ¨π‘ _0|=F. The definition of implication implies that ∣(𝑝0βˆ¨π‘ž0)∧(𝑝0β†’π‘Ÿ0)∧(π‘ž0→𝑠0)∣=T|( 𝑝_0βˆ¨π‘ž_0)∧(𝑝_0β†’π‘Ÿ_0)∧( π‘ž_0→𝑠_0)|=T and βˆ£π‘Ÿ0βˆ¨π‘ 0∣=F|π‘Ÿ_0βˆ¨π‘ _0|=F.

The definitions of conjunction and disjunction imply that βˆ£π‘0βˆ¨π‘ž0∣=βˆ£π‘0β†’π‘Ÿ0∣=βˆ£π‘ž0→𝑠0∣=T| 𝑝_0βˆ¨π‘ž_0|=|𝑝_0β†’π‘Ÿ_0|=|π‘ž_0→𝑠_0|=T and βˆ£π‘Ÿ0∣=βˆ£π‘ 0∣=F.|π‘Ÿ_0|=|𝑠_0|=F. It follows from βˆ£π‘0βˆ£β†’F=βˆ£π‘ž0βˆ£β†’F=T|𝑝_0|β†’F=|π‘ž_0|β†’F=T that ∣p0∣=∣q0∣=F.|p_0|=|q_0|=F. Consequently, ∣p0∨q0∣=F∨F=F|p_0\lor q_0|=F\lor F=F and we have a contradiction with ∣p0∨q0∣=T.|p_0\lor q_0|=T. Therefore, our assumption is not true, and we conclude that the formula (π‘βˆ¨π‘ž)∧(π‘β†’π‘Ÿ)∧(π‘žβ†’π‘ )β†’π‘Ÿβˆ¨π‘ ( π‘βˆ¨π‘ž)∧(π‘β†’π‘Ÿ)∧( π‘žβ†’π‘ )β†’π‘Ÿβˆ¨π‘  is a tautology.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS