Let A, B, and C be sets. Show that (B − A) ∪ (C − A) = (B ∪ C) – A by using Venn diagram?
Left Hand Side:
(B−A)∪(C−A)(B-A)\cup(C-A)(B−A)∪(C−A)
(B−A):(B-A):(B−A):
(C−A):(C-A):(C−A):
So,
(B−A)∪(C−A)(B-A)\cup(C-A)(B−A)∪(C−A) :
Right Hand Side:
(B∪C)−A(B\cup C)-A(B∪C)−A
(B∪C):(B\cup C):(B∪C):
and
(B∪C)−A:(B\cup C)-A:(B∪C)−A:
So, from Venn Diagram, it is clear that
(B−A)∪(C−A)=(B∪C)−A\boxed{(B-A)\cup (C-A)=(B\cup C)-A}(B−A)∪(C−A)=(B∪C)−A
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment