Using mathematical induction prove the following:
Σn k=1 k+4/k(k + 1)(k+2) = n(3n + 7)/2(n+1)(n+2)
Check for n = 1:
"\\sum\\limits_{k = 1}^1 {\\frac{{k + 4}}{{k(k + 1)(k + 2)}} = \\frac{{1 + 4}}{{1(1 + 1)(1 + 2)}} = \\frac{5}{6}} = \\frac{{1\\left( {3 \\cdot 1 + 7} \\right)}}{{2(1 + 1)(1 + 2)}}" - equality holds.
Let the equality hold for n = s, i. e
"\\sum\\limits_{k = 1}^s {\\frac{{k + 4}}{{k(k + 1)(k + 2)}} = } \\frac{{s(3s + 7)}}{{2(s + 1)(s + 2)}}"
Let us check the equality for n = s+1:
"\\sum\\limits_{k = 1}^{s + 1} {\\frac{{k + 4}}{{k(k + 1)(k + 2)}} = } \\frac{{s(3s + 7)}}{{2(s + 1)(s + 2)}} + \\frac{{s + 1 + 4}}{{(s + 1)(s + 2)(s + 3)}} = \\frac{{s(3s + 7)(s + 3) + 2(s + 5)}}{{2(s + 1)(s + 2)(s + 3)}} = \\frac{{3{s^3} + 16{s^2} + 21s + 2s + 10}}{{2(s + 1)(s + 2)(s + 3)}} = \\frac{{3{s^3} + 6{s^2} + 3s + 10{s^2} + 20s + 10}}{{2(s + 1)(s + 2)(s + 3)}} = \\frac{{3s({s^2} + 2s + 1) + 10({s^2} + 2s + 1)}}{{2(s + 1)(s + 2)(s + 3)}} = \\frac{{(3s + 10){{(s + 1)}^2}}}{{2(s + 1)(s + 2)(s + 3)}} = \\frac{{(3s + 10)(s + 1)}}{{2(s + 2)(s + 3)}} = \\frac{{(s + 1)(3(s + 1) + 7)}}{{2((s + 1) + 1)((s + 1) + 2)}}"
So, equality holds for n=s+1. Then equality holds for all "n \\in N" , Q.E.D.
Comments
Leave a comment