1-Show that ux=c1eax +c2e-ax solution of the difference equation
ux+1-2uxcosha+ux-1
u(x+1)+u(x−1)=c1ea(x+1)+c2e(−a(x+1))+c1ea(x−1)+c2e(−a(x−1))u(x+1)+u(x-1)=c_1 e^{a(x+1)} +c_2 e^{(-a(x+1) )}+c_1 e^{a(x-1)} +c_2 e^{(-a(x-1))}u(x+1)+u(x−1)=c1ea(x+1)+c2e(−a(x+1))+c1ea(x−1)+c2e(−a(x−1))
u(x+1)+u(x−1)=(c1ea(x+1)+c1ea(x−1))+(c2e(−a(x+1))+c2e(−a(x−1)))u(x+1)+u(x-1)= (c_1 e^{a(x+1)} +c_1 e^{a(x-1)} )+(c_2 e^{(-a(x+1) )}+c_2 e^{(-a(x-1) )} )u(x+1)+u(x−1)=(c1ea(x+1)+c1ea(x−1))+(c2e(−a(x+1))+c2e(−a(x−1)))
⇒(ea+e(−a))c1eax+(e(−a)+ea)c2e(−ax)⇒(ea+e(−a))(c1eax+c2e(−ax))⇒2coshau(x)\Rightarrow (e^a+e^{(-a)} ) c_1 e^{ax}+(e^{(-a)}+e^a ) c_2 e^{(-ax)}\\\Rightarrow (e^a+e^{(-a)} )(c_1 e^{ax}+c_2 e^{(-ax)} )\\\Rightarrow 2coshau(x)⇒(ea+e(−a))c1eax+(e(−a)+ea)c2e(−ax)⇒(ea+e(−a))(c1eax+c2e(−ax))⇒2coshau(x)
This equation holds for all x∈Rx\in Rx∈R
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment