1-Show that ux=c1eax +c2e-ax solution of the difference equation
ux+1-2uxcosha+ux-1
"u(x+1)+u(x-1)=c_1 e^{a(x+1)} +c_2 e^{(-a(x+1) )}+c_1 e^{a(x-1)} +c_2 e^{(-a(x-1))}"
"u(x+1)+u(x-1)= (c_1 e^{a(x+1)} +c_1 e^{a(x-1)} )+(c_2 e^{(-a(x+1) )}+c_2 e^{(-a(x-1) )} )"
"\\Rightarrow (e^a+e^{(-a)} ) c_1 e^{ax}+(e^{(-a)}+e^a ) c_2 e^{(-ax)}\\\\\\Rightarrow (e^a+e^{(-a)} )(c_1 e^{ax}+c_2 e^{(-ax)} )\\\\\\Rightarrow 2coshau(x)"
This equation holds for all "x\\in R"
Comments
Leave a comment