Answer to Question #188494 in Discrete Mathematics for Amit

Question #188494

1-Show that ux=c1eax +c2e-ax solution of the difference equation

ux+1-2uxcosha+ux-1



1
Expert's answer
2021-05-07T13:40:01-0400

u(x+1)+u(x1)=c1ea(x+1)+c2e(a(x+1))+c1ea(x1)+c2e(a(x1))u(x+1)+u(x-1)=c_1 e^{a(x+1)} +c_2 e^{(-a(x+1) )}+c_1 e^{a(x-1)} +c_2 e^{(-a(x-1))}

u(x+1)+u(x1)=(c1ea(x+1)+c1ea(x1))+(c2e(a(x+1))+c2e(a(x1)))u(x+1)+u(x-1)= (c_1 e^{a(x+1)} +c_1 e^{a(x-1)} )+(c_2 e^{(-a(x+1) )}+c_2 e^{(-a(x-1) )} )


(ea+e(a))c1eax+(e(a)+ea)c2e(ax)(ea+e(a))(c1eax+c2e(ax))2coshau(x)\Rightarrow (e^a+e^{(-a)} ) c_1 e^{ax}+(e^{(-a)}+e^a ) c_2 e^{(-ax)}\\\Rightarrow (e^a+e^{(-a)} )(c_1 e^{ax}+c_2 e^{(-ax)} )\\\Rightarrow 2coshau(x)


This equation holds for all xRx\in R


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment