Question #185893

Let S={2, 4, 7}

and T={1, 3, 5}

. Find f(S×T)

if  

  • f(x,y)=14x/3y
  •  


1
Expert's answer
2021-04-28T06:31:46-0400

Let S={2,4,7}S=\{2, 4, 7\} and T={1,3,5}T=\{1, 3, 5\}, f(x,y)=14x3y.f(x,y)=\frac{14x}{3y}.

Let us find S×T:S×T:

S×T={(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(7,1),(7,3),(7,5)}S×T=\{(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(7,1),(7,3),(7,5)\} .


Let us find f(S×T):f(S×T):


f(2,1)=283,f(2,3)=289,f(2,5)=2815,f(4,1)=563,f(4,3)=569,f(2,1)=\frac{28}{3}, f(2,3)=\frac{28}{9}, f(2,5)=\frac{28}{15}, f(4,1)=\frac{56}{3}, f(4,3)=\frac{56}{9},


f(4,5)=5615,f(7,1)=983,f(7,3)=989,f(7,5)=9815.f(4,5)=\frac{56}{15}, f(7,1)=\frac{98}{3}, f(7,3)=\frac{98}{9}, f(7,5)=\frac{98}{15}.


It follows that f(S×T)={283,289,2815,563,569,5615,983,989,9815}.f(S×T)=\{\frac{28}{3}, \frac{28}{9}, \frac{28}{15}, \frac{56}{3}, \frac{56}{9},\frac{56}{15}, \frac{98}{3}, \frac{98}{9}, \frac{98}{15}\}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS