i) Let S={2,4,7} and T={1,3,5}. Find f(S×T) if
f(x,y)=⌊14x/3y⌋
Type/Insert your answer here!
Note: No partial credit would be admissible in this question
f(x,y)=x^2+y^3
Type/Insert your answer here!
Note: No partial credit would be admissible in this question
S={2,4,7}, T={1,3,5}
S"\\times" T={(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(7,1),(7,3),(7,5)}
(i) "f(x,y)=\\dfrac{14x}{3y}"
So,
"f(S\\times T)="
"\\dfrac{14(2)}{3(1)}+\\dfrac{14(2)}{3(3)}+\\dfrac{14(2)}{3(5)}+\\dfrac{14(4)}{3(1)}+\\dfrac{14(4)}{3(3)}+\\dfrac{14(4)}{3(5)}+\\dfrac{14(7)}{3(1)}+\\dfrac{14(7)}{3(3)}+\\dfrac{14(7)}{3(5)}"
Hence "f(S\\times T)" ={"\\dfrac{28}{3},\\dfrac{28}{9},\\dfrac{28}{15},\\dfrac{56}{3},\\dfrac{56}{9},\\dfrac{56}{15},\\dfrac{98}{3},\\dfrac{98}{9},\\dfrac{98}{15}" }
(ii) "f(x,y)=x^2+y^2"
"f(S\\times T)" ={
"(2^2+1^2),(2^2+3^2),(2^2+5^2),(4^2+1^2),(4^2+3^2),(4^2+5^2),\\\\(7^2+1^2),(7^2+3^2),(7^2+5^2)" }
"F(S\\times T)=" {"{5,13,29,17,25,41,50,58,74}" }
Comments
Leave a comment