verify each of the following equivalences using basic equivalences
1)((P∧Q∧R)→S∧(R→(P ∨ Q ∨ S))≡R∧(P↔Q)→S
2)((P∧Q)→R)∧(Q→(S∨R))≡Q∧(S→P)→R
1) Simplify the left side of the equivalence
"\\left( {\\left( {P \\wedge Q \\wedge R} \\right) \\to S \\wedge \\left( {R \\to \\left( {P \\vee Q \\vee S} \\right)} \\right)} \\right) = \\left( {\\left( {\\overline {\\left( {P \\wedge Q \\wedge R} \\right)} \\vee S} \\right) \\wedge \\left( {\\overline R \\vee \\left( {P \\vee Q \\vee S} \\right)} \\right)} \\right) = \\left( {\\overline P \\vee \\overline Q \\vee \\overline R \\vee S} \\right) \\wedge \\left( {\\overline R \\vee P \\vee Q \\vee S} \\right) = \\left( {\\overline R \\vee S} \\right) \\vee \\left( {\\left( {\\overline P \\vee \\overline Q } \\right) \\wedge \\left( {P \\vee Q} \\right)} \\right) = \\left( {\\overline R \\vee S} \\right) \\vee \\left( {\\overline P \\wedge P \\vee \\overline Q \\wedge P \\vee \\overline P \\wedge Q \\vee \\overline Q \\wedge Q} \\right) = \\left( {\\overline R \\vee S} \\right) \\vee \\left( {0 \\vee \\overline Q \\wedge P \\vee \\overline P \\wedge Q \\vee 0} \\right) = \\left( {\\overline R \\vee S} \\right) \\vee \\left( {\\overline Q \\wedge P \\vee \\overline P \\wedge Q} \\right) = \\overline R \\vee S \\vee (P \\oplus Q)"
Simplify the right side of the equivalence:
"R \\wedge \\left( {P \\leftrightarrow Q} \\right) \\to S = R \\wedge \\left( {P \\to Q} \\right) \\wedge \\left( {Q \\to P} \\right) \\to S = R \\wedge \\left( {\\overline P \\vee Q} \\right) \\wedge \\left( {\\overline Q \\vee P} \\right) \\to S = \\overline {R \\wedge \\left( {\\overline P \\vee Q} \\right) \\wedge \\left( {\\overline Q \\vee P} \\right)} \\vee S = \\overline R \\vee P \\wedge \\overline Q \\vee Q \\wedge \\overline P \\vee S = \\overline R \\vee (P \\oplus Q) \\vee S" We have:
"\\overline R \\vee S \\vee (P \\oplus Q)\\equiv \\overline R \\vee (P \\oplus Q )\\vee S"
Equivalence is performed.
Answer: Equivalence is performed
2) Simplify the left side of the equivalence
"\\left( {\\left( {P \\wedge Q} \\right) \\to R} \\right) \\wedge \\left( {Q \\to \\left( {S \\vee R} \\right)} \\right) = \\left( {\\overline {\\left( {P \\wedge Q} \\right)} \\vee R} \\right) \\wedge \\left( {\\overline Q \\vee \\left( {S \\vee R} \\right)} \\right) = \\left( {\\overline P \\vee \\overline Q \\vee R} \\right) \\wedge \\left( {\\overline Q \\vee S \\vee R} \\right) = \\overline Q \\vee R \\vee \\overline P \\wedge S"
Simplify the right side of the equivalence
"Q \\wedge \\left( {S \\to P} \\right) \\to R = \\overline {Q \\wedge \\left( {S \\to P} \\right)} \\vee R = \\overline {Q \\wedge \\left( {\\overline S \\vee P} \\right)} \\vee R = \\overline Q \\vee \\overline {\\left( {\\overline S \\vee P} \\right)} \\vee R = \\overline Q \\vee S \\wedge \\overline P \\vee R"
We have
"\\overline Q \\vee R \\vee \\overline P \\wedge S\\equiv \\overline Q \\vee S \\wedge \\overline P \\vee R"
Equivalence is performed.
Answer: Equivalence is performed
Comments
Leave a comment