Question #181701

PREDICATE LOGIC.(25 pts)

A. Let P(x) be the statement x 2 > x4. If the domain consists of the integers,

what are the truth values?

1. P(0)

2. P(-1)

3. P(1)

4. P(2)

5. ∃xP(x)

6. ∀xP(x)


B. Write the following predicates symbolically and determine its truth value.

Note: Use at least three (3) values for the variables. (5 pts each)

1. for every real number x, if x>1 then x – 1 > 1

2. for some real number x, x2 ≤ 0

C. Translate the following English sentence into symbol. (3 pts each)

1. No one in this class is wearing pants and a guitarist.

Let:

Domain of x is all persons

A(x): x is wearing pants

B(x): x is a guitarist

C(x): belongs to the class

2. No one in this class is wearing pants and a guitarist.

Let:

Domain of x is persons in this class

A(x): x is wearing pants

B(x): x is a guitarist

3. There is a student at your school who knows C++ but who doesn’t

know Java.

Let:

Domain: all students at your school

C(x): x knows C++

J(x): x knows Java



1
Expert's answer
2021-04-20T02:10:18-0400

(A) To answer these questions, we first solve the indicated inequality (x2>x4)\left(x^2>x^4\right) for all real numbers xRx\in\mathbb{R} .



x2x4>0x2(1x2)>0(1)x2(x21)x2(x1)(x+1)<0x^2-x^4>0\to\left.x^2\cdot(1-x^2)>0\right|\cdot(-1)\to\\[0.3cm] x^2\cdot\left(x^2-1\right)\equiv\boxed{x^2\cdot(x-1)(x+1)<0}



Conclusion,



x(1;0)(0;1)As you can see, the solutions of this inequality are NOT integers\boxed{x\in(-1;0)\cup(0;1)}\\[0.3cm] \text{As you can see, the solutions of this inequality are NOT integers}

Moving on to the answers to these questions :

1. P(0):02>04FALSEP(0) : 0^2>0^4-\boxed{\text{FALSE}}

2. P(1):(1)2=1>(1)4=1FALSEP(-1) : (-1)^2=1>(-1)^4=1-\boxed{\text{FALSE}}

3. P(1):12=1>14=1FALSEP(1) : 1^2=1>1^4=1-\boxed{\text{FALSE}}

4. P(2):22=4>24=16FALSEP(2) : 2^2=4>2^4=16-\boxed{\text{FALSE}}

5. xP(x):x2>x4FALSE\exists xP(x) : x^2>x^4-\boxed{\text{FALSE}}

6. xP(x):x2>x4FALSE\forall xP(x) : x^2 >x^4-\boxed{\text{FALSE}}


(B) Let P(x)P(x) be the statement (x>1)(x>1) and Q(x)Q(x) is (x1>1)\left(x-1>1\right). Then, the sentence " for every real number x, if x>1x>1 then x1>1x-1>1 " has the form



xR(P(x)Q(x))FALSE\boxed{\forall x\in\mathbb{R}\left(P(x)\to Q(x)\right)-\text{FALSE}}

For example,



x=1.1{P(1.1)=1.1>1TRUEQ(1.1)=1.11=0.1>1FALSEx=1.2{P(1.2)=1.2>1TRUEQ(1.2)=1.21=0.2>1FALSEx=1.3{P(1.3)=1.3>1TRUEQ(1.3)=1.31=0.3>1FALSEx=1.1\to\left\{\begin{array}{l} P(1.1)=1.1>1-\text{TRUE}\\ Q(1.1)=1.1-1=0.1>1-\text{FALSE} \end{array}\right. \\[0.3cm] x=1.2\to\left\{\begin{array}{l} P(1.2)=1.2>1-\text{TRUE}\\ Q(1.2)=1.2-1=0.2>1-\text{FALSE} \end{array}\right. \\[0.3cm] x=1.3\to\left\{\begin{array}{l} P(1.3)=1.3>1-\text{TRUE}\\ Q(1.3)=1.3-1=0.3>1-\text{FALSE} \end{array}\right. \\[0.3cm]



Let P(x)P(x) be the statement (x20)(x^2\le0). Then, the sentence " for some real number xx , x20x^2\le0 " has the form



xP(x)TRUE\boxed{\exists xP(x)-\text{TRUE}}



For example,



x=0020TRUEx=1.21.221.440FALSEx=2.5(2.5)26.250FALSEx=0\to 0^2\le0-\text{TRUE} \\[0.3cm] x=1.2\to 1.2^2\equiv1.44\le0-\text{FALSE}\\[0.3cm] x=-2.5\to(-2.5)^2\equiv6.25\le0-\text{FALSE}

(C)

1.No one in this class is wearing pants and a guitarist.

Let:

Domain of xx is all persons

A(x):xA(x) : x is wearing pants

B(x):xB(x) : x is a guitarist

C(x):C(x) : belongs to the class



xD,(C(x)(A(x)B(x)))\boxed{\forall x\in D,\left(C(x)\to\left(A(x)\land B(x)\right)\right)}

2. No one in this class is wearing pants and a guitarist.

Let:

Domain of xx is persons in this class

A(x):xA(x):x is wearing pants

B(x):xB(x):x is a guitarist



x(¬A(x)¬B(x))\boxed{\forall x\left(\neg A(x)\land\neg B(x)\right)}

3. There is a student at your school who knows C++ but who doesn’t

know Java.

Let:

Domain: all students at your school

C(x):xC(x):x knows C++

J(x):xJ(x):x knows Java



x(C(x)¬J(x))\boxed{\exists x\left(C(x)\land\neg J(x)\right)}

Q.E.D.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS