Let us use the Euclidean algorithm to find integers x and y such that 2640x+2110y=10. This equation is uquivalent to the equation 264x+211y=1.
Since
264=211⋅1+53, 211=53⋅3+52, 53=52⋅1+1,
we conclude that
1=53−52=53−(211−53⋅3)=−211+53⋅4=−211+(264−211)⋅4=264⋅4+211(−5).
Therefore, x=4 and y=−5.
The general solution of the equation is {x=4−211ty=−5+264t
Comments