Let us use the Euclidean algorithm to find integers x  and y  such that 2640x+2110y=10. This equation is uquivalent to the equation  264x+211y=1. 
Since  
		 264=211⋅1+53, 211=53⋅3+52, 53=52⋅1+1, 
we conclude that 
1=53−52=53−(211−53⋅3)=−211+53⋅4=−211+(264−211)⋅4=264⋅4+211(−5). 
Therefore, x=4 and y=−5. 
The general solution of the equation is       {x=4−211ty=−5+264t  
 
                             
Comments