Self - Assessment
A. List the members of the following sets
1. {x| x is real numbers and x2 = 1}
2. {x| x is an integer and -4 < x ≤ 3}
B. Use set builder notation to give description of each of these sets.
1. {a, e,i ,o, u}
2. {=2, -1, 0, 1, 2}
C. Let A= (a, b, c), B = (x, y) and C = (0, 1)
Find:
1. A U C
2. C x B
3. B – A
4. (A ∩ C) U B
D. Find these terms of the sequence (An}, where An = 2(3)n + 5
1. A0
2. A5
3. A3
4. 8th term
5. 2nd term
6. Sum of the sequence
E. Given the following set:
2. X = {-1, 0, 1, 2, 3, 4, 5} defined by the rule (x, y) ∈R if x ≤ y
F. List the elements of R
G. Find the domain of R
H. Find the range of R
I. Draw the digraph
J. Properties of the Relation
Solution:
(A):
1: "\\{ 1,-1\\}"
2: "\\{ -3,-2,-1,0,1,3\\}"
(B):
1: {x| x is a vowel }
2: {x| x is an integer and "-2\\le x\\le2" }
(C):
1: "A\\cup C=\\{ a,b,c,0,1\\}"
2: "C\\times B=\\{ (0,x),(0,y),(1,x),(1,y)\\}"
3: "B-A=\\{ x,y\\}"
4: "(A\\cap C)\\cup B=\\{\\phi\\}\\cup \\{x,y\\}=\\{x,y\\}"
(D):
"A_n=2(3)^n+5"
(1): Put n = 0
"A_0=2(3)^0+5=2(1)+5=7"
(2): Put n = 5
"A_5=2(3)^5+5=2(243)+5=491"
(3): Put n = 3
"A_3=2(3)^3+5=2(27)+5=59"
(4): For 8th term, put n = 8
"A_8=2(3)^8+5=2(6561)+5=13127"
(5): For 2nd term, put n = 2
"A_2=2(3)^2+5=2(9)+5=23"
(6): "S_n=\\sum [2(3)^n+5]=2\\sum 3^n+5\\sum 1"
"=2(3^0+3^1+...+3^n)+5n\n\\\\=2[\\dfrac{1(3^{n-1}-1)}{3-1}]+5n \\ [\\text{Using GP}] \n\\\\=3^{n-1}+5n-1"
(E):
(F): R = {(-1,-1),(-1,0),(-1,1),(-1,2),(-1,3),(-1,4),(-1,5),(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,5)}
(G): Domain of R = {-1, 0, 1, 2, 3, 4, 5}
(H): Range of R = {-1, 0, 1, 2, 3, 4, 5}
(I): Digraph:
(J): This relation is reflexive and transitive but not symmetric as-
Reflexive: "(x\\le x)", this is true
Transitive: "\\\\(x\\le y)\\ \\& (y\\le z)\\Rightarrow (x\\le z)", this is true
Symmetric: "(x\\le y)\\Rightarrow (y\\le x)", this is not true.
Comments
Leave a comment