Answer to Question #168472 in Discrete Mathematics for Muhammad Ahmad

Question #168472

Proof the following by using logical equivalences identities. Are these system specifications consistent by using Reasoning Method? a) ¬(p ∧ (p → ¬q))→¬p

b) ¬(q →¬p)→¬q


1
Expert's answer
2021-03-04T15:06:11-0500

(a)

"\\neg(p\\wedge(p\\to \\neg q)) \\to \\neg p\\\\\n\\neg(p\\wedge(\\neg p\\vee \\neg q)) \\to \\neg p \\text{ Implication}\\\\\n\\neg((p\\wedge\\neg p) \\vee(p\\wedge\\neg q)) \\to \\neg p \\text{ Distributive }\\\\\n\\neg(F\\vee(p\\wedge \\neg q)) \\to \\neg p \\text{ Identity }\\\\\n\\neg(p\\wedge\\neg q) \\to \\neg p \\text{ Absorption }\\\\\n\\neg\\neg(p\\wedge\\neg q) \\vee \\neg p \\text{ Implication }\\\\\n(p \\wedge \\neg q) \\vee \\neg p \\text{ Negation }\\\\\n(p\\vee \\neg p) \\wedge(\\neg q \\vee \\neg p) \\text{ Distributive }\\\\\nT\\wedge(\\neg q \\vee \\neg p) \\text{ Identity}\\\\\n(\\neg q \\vee \\neg p) \\text{ Absorption }"

(b)

"\\neg (q \\to \\neg p) \\to \\neg q\\\\\n\\neg\\neg(\\neg q \\vee \\neg p) \\vee \\neg q \\text{ Implications }\\\\\n(\\neg q \\vee \\neg p) \\vee \\neg q \\text{ Double Negation }\\\\\n(\\neg p \\vee \\neg q) \\vee \\neg q \\text{ Commutative }\\\\\n\\neg p \\vee (\\neg q \\vee \\neg q) \\text{ Associative }\\\\\n\\neg p \\vee \\neg q \\text{ Idempotent Law}\\\\\n\\neg q \\vee \\neg p \\text{ Commutative }"

The are consistent by reasoning methods


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS