Proof the following by using logical equivalences identities. Are these system specifications consistent by using Reasoning Method? a) ¬(p ∧ (p → ¬q))→¬p
b) ¬(q →¬p)→¬q
(a)
"\\neg(p\\wedge(p\\to \\neg q)) \\to \\neg p\\\\\n\\neg(p\\wedge(\\neg p\\vee \\neg q)) \\to \\neg p \\text{ Implication}\\\\\n\\neg((p\\wedge\\neg p) \\vee(p\\wedge\\neg q)) \\to \\neg p \\text{ Distributive }\\\\\n\\neg(F\\vee(p\\wedge \\neg q)) \\to \\neg p \\text{ Identity }\\\\\n\\neg(p\\wedge\\neg q) \\to \\neg p \\text{ Absorption }\\\\\n\\neg\\neg(p\\wedge\\neg q) \\vee \\neg p \\text{ Implication }\\\\\n(p \\wedge \\neg q) \\vee \\neg p \\text{ Negation }\\\\\n(p\\vee \\neg p) \\wedge(\\neg q \\vee \\neg p) \\text{ Distributive }\\\\\nT\\wedge(\\neg q \\vee \\neg p) \\text{ Identity}\\\\\n(\\neg q \\vee \\neg p) \\text{ Absorption }"
(b)
"\\neg (q \\to \\neg p) \\to \\neg q\\\\\n\\neg\\neg(\\neg q \\vee \\neg p) \\vee \\neg q \\text{ Implications }\\\\\n(\\neg q \\vee \\neg p) \\vee \\neg q \\text{ Double Negation }\\\\\n(\\neg p \\vee \\neg q) \\vee \\neg q \\text{ Commutative }\\\\\n\\neg p \\vee (\\neg q \\vee \\neg q) \\text{ Associative }\\\\\n\\neg p \\vee \\neg q \\text{ Idempotent Law}\\\\\n\\neg q \\vee \\neg p \\text{ Commutative }"
The are consistent by reasoning methods
Comments
Leave a comment