Write the formula of the following sequence, identify if explicit or recursive formula or both.
1. 1.3,5.7
2. 1, -1, 1, -1
3. 1, 4, 7, 10, 13, 16
4. 0, 3, 8, 15, 24, 25
5. 0, 2, 0, 2, 0, 2 ...
6.1, 1/2, 1/4, 1/8, 1/16
7. 0, 1, 1, 2, 3, 5, 8, 13 ... (fibonacci sequence)
Let us write the explicit and recursive formulas of the following sequences:
1. 1.3, 5.7,...
explicit formula: "a_n=-3.1+4.4n", recursive formula: "a_{n+1}=a_n+4.4, \\ a_1=1.3"
2. 1, -1, 1, -1,...
explicit formula: "a_n=(-1)^{n-1}", recursive formula: "a_{n+1}=-a_n, \\ a_1=1"
3. 1, 4, 7, 10, 13, 16,...
explicit formula: "a_n=-2+3n", recursive formula: "a_{n+1}=a_n+3, \\ a_1=1"
4. 0, 3, 8, 15, 24, ...
explicit formula: "a_n=n^2-1", recursive formula: "a_{n+1}=a_n+2n-1, \\ a_1=0"
5. 0, 2, 0, 2, 0, 2, ...
explicit formula: "a_n=1+(-1)^n", recursive formula: "a_{n+1}=a_n+2(-1)^{n+1}, \\ a_1=0"
6. 1, 1/2, 1/4, 1/8, 1/16,...
explicit formula: "a_n=2^{1-n}", recursive formula: "a_{n+1}=\\frac{a_n}{2}, \\ a_1=1"
7. 0, 1, 1, 2, 3, 5, 8, 13, ...
explicit formula: "a_n=\\frac{(1+\\sqrt{5})^{n-1}-(1-\\sqrt{5})^{n-1}}{2^{n-1}\\sqrt{5}}", recursive formula: "a_{n+2}=a_{n+1}+a_{n}, \\ a_1=0, a_2=1"
Comments
Leave a comment