Question #160838

solve these non-homogeneous recurrence relation an+ 4an-1 − 5an-2=n+2 where a0=1 & a1=-1

1
Expert's answer
2021-02-04T07:37:09-0500

A solution bnb_n to the non-homogeneous recurrence is similar to f(n).

Guess:

bn=cn+db_n=cn+d

Then:

cn+d+4(c(n1)+d)5(c(n2)+d)=n+2cn+d+4(c(n-1)+d)-5(c(n-2)+d)=n+2

n4=0n-4=0

c=d=bn=0c=d=b_n=0


Solution of the given recurrence is

an=bn+hna_n=b_n+h_n

where hnh_n is a solution for the associated homogeneous recurrence:

hn+4hn15hn2=0h_n+4h_{n-1}-5h_{n-2}=0

In our case: an=hna_n=h_n


Characteristic equation:

r2+4r5=0r^2+4r-5=0

r1=416+202=5,r2=1r_1=\frac{-4-\sqrt{16+20}}{2}=-5, r_2=1

an=α1r1n+α2r2na_n=\alpha_1r_1^n+\alpha_2r_2^n

an=α1(5)n+α2a_n=\alpha_1(-5)^n+\alpha_2


a0=α1+α2=1a_0=\alpha_1+\alpha_2=1

a1=5α1+α2=1a_1=-5\alpha_1+\alpha_2=-1

5α1+(1α1)=1-5\alpha_1+(1-\alpha_1)=-1

α1=1/3,α2=2/3\alpha_1=1/3,\alpha_2=2/3


Solution:

an=13(5)n+23a_n=\frac{1}{3}(-5)^n+\frac{2}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS