A solution b n b_n b n to the non-homogeneous recurrence is similar to f(n).
Guess:
b n = c n + d b_n=cn+d b n = c n + d
Then:
c n + d + 4 ( c ( n − 1 ) + d ) − 5 ( c ( n − 2 ) + d ) = n + 2 cn+d+4(c(n-1)+d)-5(c(n-2)+d)=n+2 c n + d + 4 ( c ( n − 1 ) + d ) − 5 ( c ( n − 2 ) + d ) = n + 2
n − 4 = 0 n-4=0 n − 4 = 0
c = d = b n = 0 c=d=b_n=0 c = d = b n = 0
Solution of the given recurrence is
a n = b n + h n a_n=b_n+h_n a n = b n + h n
where h n h_n h n is a solution for the associated homogeneous recurrence:
h n + 4 h n − 1 − 5 h n − 2 = 0 h_n+4h_{n-1}-5h_{n-2}=0 h n + 4 h n − 1 − 5 h n − 2 = 0
In our case: a n = h n a_n=h_n a n = h n
Characteristic equation:
r 2 + 4 r − 5 = 0 r^2+4r-5=0 r 2 + 4 r − 5 = 0
r 1 = − 4 − 16 + 20 2 = − 5 , r 2 = 1 r_1=\frac{-4-\sqrt{16+20}}{2}=-5, r_2=1 r 1 = 2 − 4 − 16 + 20 = − 5 , r 2 = 1
a n = α 1 r 1 n + α 2 r 2 n a_n=\alpha_1r_1^n+\alpha_2r_2^n a n = α 1 r 1 n + α 2 r 2 n
a n = α 1 ( − 5 ) n + α 2 a_n=\alpha_1(-5)^n+\alpha_2 a n = α 1 ( − 5 ) n + α 2
a 0 = α 1 + α 2 = 1 a_0=\alpha_1+\alpha_2=1 a 0 = α 1 + α 2 = 1
a 1 = − 5 α 1 + α 2 = − 1 a_1=-5\alpha_1+\alpha_2=-1 a 1 = − 5 α 1 + α 2 = − 1
− 5 α 1 + ( 1 − α 1 ) = − 1 -5\alpha_1+(1-\alpha_1)=-1 − 5 α 1 + ( 1 − α 1 ) = − 1
α 1 = 1 / 3 , α 2 = 2 / 3 \alpha_1=1/3,\alpha_2=2/3 α 1 = 1/3 , α 2 = 2/3
Solution:
a n = 1 3 ( − 5 ) n + 2 3 a_n=\frac{1}{3}(-5)^n+\frac{2}{3} a n = 3 1 ( − 5 ) n + 3 2
Comments