{ (p→q) ^ [ q → (r ^ s) ] ^ (p ^ w) ^ [~r v (~w v u) ] } → u
{ (p→q) ^ [ q → (r ^ s) ] ^ (p ^ w) ^ [~r v (~w v u) ] } → u
P is true
q is true
r is true
s is true
W is true
u is true
{ (p→q) ^ [ q → (r ^ s) ] ^ (p ^ w) ^ [~r v (~w v u) ] } → u
"{(T\\implies T)\\land[T\\implies (T\\land T)]\\land (T\\land T)\\land[\\tilde r\\cup(\\tilde T\\cup(\\tilde T\\cup T)]}\\implies u\\\\\n{T \\land T\\land T\\land [F\\cup(F \\cup T)}\\implies T\\\\\nT\\land T\\land T\\land [T]\\implies T\\\\\nT\\implies T\\\\" This is critical row so prove the validity of argument
Using truth table
Lawof syllagism
Comments
Leave a comment