n=p×qn=31×41=1271Euler′stotientofnɸ(n)=(p−1)(q−1)=30×40=1200gcd(ɸ(n),e)=gcd(1200,11)=11<e<ɸ(n)edmodɸ(n)=1=ed≡modɸ(n)d=e−1modɸ(n)11dmod1200=1xmody≡yx≡R120011dR=1d=1091
decryption key d = 1091
Encrypting message M with public key (n,e)
C=Memodn=30ʹʹmod1200C=557
For C = 101 Decrypting with private key (1271, 1091)
M=Cdmodn=1011091mod1271=95d=e1+iɸ(n)
If i = 1
d=111+1200=109.18
If i = 2
d=111+2400=218.27
If i = 10
d=111+12000=1091
Comments