Question #149677
A palindrome number is a number that is read similarly backwards. How
many possible 5-digit palindromic numbers are there?
A. 608
B. 648
C. 688
D. 728
1
Expert's answer
2020-12-10T13:35:13-0500

let x1,x2,x3,x4,x5 digit palindrome \text{let }x_1,x_2,x_3,x_4,x_5 \text { digit palindrome },

x1=x2,x2=x4,x3=x3equality defined when reading palindrome in reversex_1=x_2,x_2=x_4,x_3 =x_3\, \text{equality defined when reading palindrome in reverse}

that is, the palindrome is uniquely determined by the choice of numbers x1,x2,x3\text {that is, the palindrome is uniquely determined by the choice of numbers }x_1,x_2,x_3 ;

x1 can be selected from 9 digits,x_1 \text{ can be selected from 9 digits,}

0 is excluded because the palindrome is five digits\text{0 is excluded because the palindrome is five digits} ,

x2,x3 can be selected from 10 digitsx_2,x_3 \text{ can be selected from 10 digits} ,

the number of combinations will be 91010=900\text{the number of combinations will be }9*10*10=900 ,

the number of 5 digit palindromes are 900\text{the number of 5 digit palindromes are }\,900 ,

all the suggested answer options are not correct.\text {all the suggested answer options are not correct.}


Answer: 900 the number of 5 digit palindromes, all the suggested answer options are not correct






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS