i) Write down the characteristic equation:
x 2 = x + 1 x^2 = x + 1 x 2 = x + 1
x 2 − x − 1 = 0 x^2 -x -1 =0 x 2 − x − 1 = 0
x 1 = 1 + 5 2 = ϕ ; x 2 = 1 − 5 2 = ψ x_1 =\frac{1 + \sqrt5}2 = \phi ; \ x_2 = \frac {1 -\sqrt 5}2 =\psi x 1 = 2 1 + 5 = ϕ ; x 2 = 2 1 − 5 = ψ
F n = a x 1 n + b x 2 n F_n = ax_1^n +bx_2^n F n = a x 1 n + b x 2 n
a ∗ ϕ + b ∗ ψ = 1 a n d a ∗ ϕ 2 + b ∗ ψ 2 = 1 a*\phi +b*\psi = 1\ and\ \ a*\phi^2 +b*\psi^2 = 1 a ∗ ϕ + b ∗ ψ = 1 an d a ∗ ϕ 2 + b ∗ ψ 2 = 1
a ∗ ϕ = 1 − b ∗ ψ ; a*\phi = 1 - b*\psi; a ∗ ϕ = 1 − b ∗ ψ ;
( 1 − b ∗ ψ ) ∗ ϕ + b ∗ ψ 2 = 1 (1-b*\psi)*\phi +b*\psi^2 = 1 ( 1 − b ∗ ψ ) ∗ ϕ + b ∗ ψ 2 = 1
ϕ ∗ ψ = 1 − 5 4 = − 1 ; \phi*\psi = \frac{1- 5}4 = -1; ϕ ∗ ψ = 4 1 − 5 = − 1 ;
ϕ + b + b ∗ ψ 2 = 1 \phi +b + b*\psi^2 = 1 ϕ + b + b ∗ ψ 2 = 1
b ∗ ( 1 + ψ 2 ) = 1 − ϕ b*(1+\psi^2) = 1 -\phi b ∗ ( 1 + ψ 2 ) = 1 − ϕ
ψ 2 > 0 ; 1 + ψ 2 > 0 \psi^2 > 0;\ \ 1+ \psi^2 >0 ψ 2 > 0 ; 1 + ψ 2 > 0
b = 1 − ϕ 1 + ψ 2 = 1 − 1 + 5 2 1 + ( 1 − 5 2 ) 2 = b = \frac {1-\phi}{1+\psi^2} = \frac {1- \frac{1+\sqrt 5}2}{1+ (\frac{1-\sqrt5}2)^2} = b = 1 + ψ 2 1 − ϕ = 1 + ( 2 1 − 5 ) 2 1 − 2 1 + 5 =
= 1 − 5 2 2 ∗ 5 − 2 ∗ 5 4 = 1 − 5 2 − 5 ∗ ( 1 − 5 ) 2 = − 1 5 = \frac{\frac{1-\sqrt5}{2}}{\frac{2*5 -2*\sqrt5}4} = \frac{\frac{1-\sqrt5}{2}}{-\sqrt5*\frac{(1 - \sqrt5)}2}=-\frac {1}{\sqrt5} = 4 2 ∗ 5 − 2 ∗ 5 2 1 − 5 = − 5 ∗ 2 ( 1 − 5 ) 2 1 − 5 = − 5 1
ϕ > 0 ; a = 1 + ψ 5 ϕ = 1 + 1 − 5 2 5 1 + 5 2 = \phi > 0;\ \ a = \frac{1 + \frac{\psi}{\sqrt5}}{\phi} =\frac{1+\frac{\frac{1-\sqrt5}{2}}{\sqrt5}}{\frac{1+\sqrt5}{2}}= ϕ > 0 ; a = ϕ 1 + 5 ψ = 2 1 + 5 1 + 5 2 1 − 5 =
= 2 ∗ 5 + 1 − 5 2 5 1 + 5 2 = 1 + 5 2 5 1 + 5 2 = =\frac{\frac{2*\sqrt5+1-\sqrt5}{2\sqrt5}}{\frac{1+\sqrt5}{2}} =\frac{\frac{1+\sqrt5}{2\sqrt5}}{\frac{1+\sqrt5}{2}}= = 2 1 + 5 2 5 2 ∗ 5 + 1 − 5 = 2 1 + 5 2 5 1 + 5 =
= 1 5 ∗ 1 + 5 2 1 + 5 2 = 1 5 =\frac{1}{\sqrt5}*\frac{\frac{1+\sqrt5}{2}}{\frac{1+\sqrt5}{2}} = \frac{1}{\sqrt5} = 5 1 ∗ 2 1 + 5 2 1 + 5 = 5 1
F n = ϕ n 5 − ψ n 5 = ϕ n − ψ n 5 ; F_n = \frac{\phi^n}{\sqrt5} - \frac{\psi^n}{\sqrt5}= \frac{\phi^n - \psi^n}{\sqrt5}; F n = 5 ϕ n − 5 ψ n = 5 ϕ n − ψ n ;
ii) a 3 = 2 ∗ 5 − 1 + 2 = 10 + 1 = 11 a_3 = 2*5 -1 + 2 = 10 + 1 = 11 a 3 = 2 ∗ 5 − 1 + 2 = 10 + 1 = 11
a n + 1 = 2 a n − a n − 1 + 2 ; a_{n+1} = 2a_{n} - a_{n-1} + 2; a n + 1 = 2 a n − a n − 1 + 2 ;
a n = 2 a n − 1 − a n − 2 + 2 ; a_n = 2a_{n-1} - a_{n-2} + 2; a n = 2 a n − 1 − a n − 2 + 2 ;
From the first equation subtract the second:
a n + 1 − a n = 2 a n − a n − 1 + 2 − 2 a n − 1 + a n − 2 − 2 a_{n+1} - a_n = 2a_n - a_{n-1} + 2 - 2a_{n-1} + a_{n-2} - 2 a n + 1 − a n = 2 a n − a n − 1 + 2 − 2 a n − 1 + a n − 2 − 2
a n + 1 = 3 a n − 3 a n − 1 + a n − 2 f o r n ≥ 3 a_{n+1} = 3a_n - 3a_{n-1} + a_{n-2} \ for \ n \ge 3 a n + 1 = 3 a n − 3 a n − 1 + a n − 2 f or n ≥ 3
Therefore, for n ≥ 4 : a n = 3 a n − 1 − 3 a n − 2 + a n − 3 ; n \ge 4: a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}; n ≥ 4 : a n = 3 a n − 1 − 3 a n − 2 + a n − 3 ;
Write down the characteristic equation:
x 3 − 3 x 2 + 3 x − 1 = 0 x^3 - 3x^2 +3x -1 = 0 x 3 − 3 x 2 + 3 x − 1 = 0
( x − 1 ) 3 = 0 (x-1)^3= 0 ( x − 1 ) 3 = 0
x 1 , 2 , 3 = 1 ; x_{1,2,3}= 1; x 1 , 2 , 3 = 1 ;
a n = k 1 ∗ 1 n + k 2 ∗ n ∗ 1 n + k 3 ∗ n 2 ∗ 1 n = a_n = k_1*1^n + k_2*n*1^n + k_3*n^2*1^n = a n = k 1 ∗ 1 n + k 2 ∗ n ∗ 1 n + k 3 ∗ n 2 ∗ 1 n =
= k 1 + k 2 ∗ n + k 3 ∗ n 2 ; =k_1+ k_2*n + k_3*n^2; = k 1 + k 2 ∗ n + k 3 ∗ n 2 ;
The system of three equations:
k 1 + k 2 + k 3 = a 1 = 1 k_1+ k_2 + k_3= a_1 = 1 k 1 + k 2 + k 3 = a 1 = 1
k 1 + k 2 ∗ 2 + k 3 ∗ 4 = a 2 = 5 k_1+ k_2*2 + k_3*4= a_2 = 5 k 1 + k 2 ∗ 2 + k 3 ∗ 4 = a 2 = 5
k 1 + k 2 ∗ 3 + k 3 ∗ 9 = a 3 = 11 k_1+ k_2*3 + k_3*9= a_3 = 11 k 1 + k 2 ∗ 3 + k 3 ∗ 9 = a 3 = 11
Subtract the first from the second:
k 2 + k 3 ∗ 3 = 4 k_2 + k_3*3= 4 k 2 + k 3 ∗ 3 = 4 (iv)
Subtract the second from the third:
k 2 + k 3 ∗ 5 = 6 k_2 + k_3*5= 6 k 2 + k 3 ∗ 5 = 6 (v)
Subtract (iv) from (v):
k 3 ∗ 2 = 2 k_3*2 = 2 k 3 ∗ 2 = 2
k 3 = 1 k_3 = 1 k 3 = 1
From this and (iv):
k 2 + 3 = 4 k_2 +3 = 4 k 2 + 3 = 4
k 2 = 1 k_2 = 1 k 2 = 1
From these and the first:
k 1 + 1 + 1 = 1 k_1 + 1 +1 = 1 k 1 + 1 + 1 = 1
k 1 = − 1 k_1=-1 k 1 = − 1
a n = − 1 + n + n 2 = n 2 + n − 1. a_n = -1 + n + n^2 = n^2 +n -1. a n = − 1 + n + n 2 = n 2 + n − 1.
Answer: i) F n = ϕ n − ψ n 5 F_n = \frac{\phi^n - \psi^n}{\sqrt5} F n = 5 ϕ n − ψ n
ii) a n = n 2 + n − 1 a_n = n^2 +n -1 a n = n 2 + n − 1
Comments