Answer to Question #147069 in Discrete Mathematics for taha

Question #147069
1.Determine whether ¬(p∨(¬p∧q)) and ¬p∧¬q are equivalent without using truth table.
2.Determine whether the compound proposition ~(p∨q)∨(~p∧q)∨p to tautology.
3.Determine whether (p → q)∧(p → r)≡p → (q ∧r) using a truth table
1
Expert's answer
2020-12-01T06:18:45-0500

Let T denotes True and F denotes False.


1.Let us determine whether "\u00ac(p\u2228(\u00acp\u2227q))" and "\u00acp\u2227\u00acq" are equivalent:


"\u00ac(p\u2228(\u00acp\u2227q))=\u00acp\\land\\neg(\u00acp\u2227q))=\u00acp\\land(p\\lor\\neg q))="


"=\u00acp\\land p\\lor \u00acp\\land\\neg q=F\\lor \u00acp\\land\\neg q= \u00acp\\land\\neg q" .


Therefore, the formulas are equivalent.


2.Let us determine whether the compound proposition "\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p" is tautology.


"\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p=\\sim(p\u2228q)\u2228(\\sim p\\lor p)\u2227(q\u2228p)=\\sim(p\u2228q)\u2228T\u2227(q\u2228p)="


"=\\sim(p\u2228q)\u2228(q\u2228p)=\\sim(p\u2228q)\u2228(p\\lor q)=T."


Therefore, the formula "\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p" is tautology.



3.Let us determine whether (p → q)∧(p → r) ≡ p → (q ∧r) using a truth table:


"\\begin{array}{||c|c|c||c|c|c|c|c||}\n\\hline\\hline\n p & q & r & p\\to q & p\\to r & (p\\to q)\\land (p\\to r) & q\\land r & p\\to(q\\land r)\\\\\n\\hline\\hline\nF & F & F & T & T & T & F & T\\\\\n\\hline\nF & F & T & T & T & T & F & T \\\\\n\\hline\nF & T & F & T & T & T & F & T \\\\\n\\hline\nF & T & T & T & T & T & T & T \\\\\n\\hline\nT & F & F & F & F & F & F & F\\\\\n\\hline\nT & F & F & F & T & F & F & F \\\\\n\\hline\nT & T & F & T & F & F & F & F\\\\\n\\hline\nT & T & T & T & T & T & T & T\\\\\n\\hline\\hline\n\n\\end{array}"


Since the formulas "(p\\to q)\\land (p\\to r)" and "p\\to(q\\land r)" always have the same truth values, they are logically equivalent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS