Let T denotes True and F denotes False.
1.Let us determine whether "\u00ac(p\u2228(\u00acp\u2227q))" and "\u00acp\u2227\u00acq" are equivalent:
"\u00ac(p\u2228(\u00acp\u2227q))=\u00acp\\land\\neg(\u00acp\u2227q))=\u00acp\\land(p\\lor\\neg q))="
"=\u00acp\\land p\\lor \u00acp\\land\\neg q=F\\lor \u00acp\\land\\neg q= \u00acp\\land\\neg q" .
Therefore, the formulas are equivalent.
2.Let us determine whether the compound proposition "\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p" is tautology.
"\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p=\\sim(p\u2228q)\u2228(\\sim p\\lor p)\u2227(q\u2228p)=\\sim(p\u2228q)\u2228T\u2227(q\u2228p)="
"=\\sim(p\u2228q)\u2228(q\u2228p)=\\sim(p\u2228q)\u2228(p\\lor q)=T."
Therefore, the formula "\\sim(p\u2228q)\u2228(\\sim p\u2227q)\u2228p" is tautology.
3.Let us determine whether (p → q)∧(p → r) ≡ p → (q ∧r) using a truth table:
"\\begin{array}{||c|c|c||c|c|c|c|c||}\n\\hline\\hline\n p & q & r & p\\to q & p\\to r & (p\\to q)\\land (p\\to r) & q\\land r & p\\to(q\\land r)\\\\\n\\hline\\hline\nF & F & F & T & T & T & F & T\\\\\n\\hline\nF & F & T & T & T & T & F & T \\\\\n\\hline\nF & T & F & T & T & T & F & T \\\\\n\\hline\nF & T & T & T & T & T & T & T \\\\\n\\hline\nT & F & F & F & F & F & F & F\\\\\n\\hline\nT & F & F & F & T & F & F & F \\\\\n\\hline\nT & T & F & T & F & F & F & F\\\\\n\\hline\nT & T & T & T & T & T & T & T\\\\\n\\hline\\hline\n\n\\end{array}"
Since the formulas "(p\\to q)\\land (p\\to r)" and "p\\to(q\\land r)" always have the same truth values, they are logically equivalent.
Comments
Leave a comment