Expansion of (3x–10y)11 =C(11,0)×(3x)11×(−10y)0+C(11,1)×(3x)10×(−10y)1+C(11,2)×(3x)9×(−10y)2+...+C(11,10)×(3x)1×(−10y)10+C(11,11)×(3x)0×(−10y)11
=311x11−(11×310×101)x10y1+(55×39×102)x9y2+...+(11×31×1010)x1y10−1011y11
General term is Tr+1=C(11,r)(3x)11−r(−10y)r .
Hence, number of terms are 12.
Term containing y3 appears when r=3 i.e. fourth term.
So, T4=C(11,3)(3x)8(−10y)3=(165000×38)x8y3 .
This term is not of x4y3 form, hence coefficient of x4y3 is zero.
Comments