2020-08-12T02:57:17-04:00
(b) Given f(x) = x
2
, g(x) = 2x and h(x) = x - 2 be functions from R to R. Find
(i) f ◦ g
(ii) f ◦ h
(iii) h ◦ f
(iv) (f ◦ g) ◦ h
(v) f ◦ (g ◦ h)
1
2020-08-17T18:32:01-0400
(i)
f ∘ g = f ( g ( x ) ) = f ( 2 x ) = ( 2 x ) 2 = 4 x 2 f\circ g=f(g(x))=f(2x)=(2x)^2=4x^2 f ∘ g = f ( g ( x )) = f ( 2 x ) = ( 2 x ) 2 = 4 x 2
(ii)
f ∘ h = f ( h ( x ) ) = f ( x − 2 ) = ( x − 2 ) 2 = x 2 − 4 x + 4 f\circ h=f(h(x))=f(x-2)=(x-2)^2=x^2-4x+4 f ∘ h = f ( h ( x )) = f ( x − 2 ) = ( x − 2 ) 2 = x 2 − 4 x + 4
(iii)
h ∘ f = h ( f ( x ) ) = h ( x 2 ) = x 2 − 2 h\circ f=h(f(x))=h(x^2)=x^2-2 h ∘ f = h ( f ( x )) = h ( x 2 ) = x 2 − 2
(iv)
( f ∘ g ) ∘ h = ( f ∘ g ) ( h ( x ) ) = ( f ∘ g ) ( x − 2 ) = (f\circ g)\circ h=(f\circ g)(h(x))=(f\circ g)(x-2)= ( f ∘ g ) ∘ h = ( f ∘ g ) ( h ( x )) = ( f ∘ g ) ( x − 2 ) =
= f ( g ( x − 2 ) ) = f ( 2 ( x − 2 ) ) = ( 2 ( x − 2 ) ) 2 = =f(g(x-2))=f(2(x-2))=(2(x-2))^2= = f ( g ( x − 2 )) = f ( 2 ( x − 2 )) = ( 2 ( x − 2 ) ) 2 =
= 4 x 2 − 16 x + 16 =4x^2-16x+16 = 4 x 2 − 16 x + 16
(v)
f ∘ ( g ∘ h ) = f ( ( g ∘ h ) ( x ) ) = f ( g ( h ( x ) ) ) = f\circ (g\circ h)=f((g\circ h)(x))=f(g(h(x)))= f ∘ ( g ∘ h ) = f (( g ∘ h ) ( x )) = f ( g ( h ( x ))) =
= f ( g ( x − 2 ) ) = f ( 2 ( x − 2 ) ) = ( 2 ( x − 2 ) ) 2 = =f(g(x-2))=f(2(x-2))=(2(x-2))^2= = f ( g ( x − 2 )) = f ( 2 ( x − 2 )) = ( 2 ( x − 2 ) ) 2 =
= 4 x 2 − 16 x + 16 =4x^2-16x+16 = 4 x 2 − 16 x + 16
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments