Question #129383
(b) Given f(x) = x
2
, g(x) = 2x and h(x) = x - 2 be functions from R to R. Find
(i) f ◦ g
(ii) f ◦ h
(iii) h ◦ f
(iv) (f ◦ g) ◦ h
(v) f ◦ (g ◦ h)
1
Expert's answer
2020-08-17T18:32:01-0400

(i)

fg=f(g(x))=f(2x)=(2x)2=4x2f\circ g=f(g(x))=f(2x)=(2x)^2=4x^2

(ii)

fh=f(h(x))=f(x2)=(x2)2=x24x+4f\circ h=f(h(x))=f(x-2)=(x-2)^2=x^2-4x+4

(iii)

hf=h(f(x))=h(x2)=x22h\circ f=h(f(x))=h(x^2)=x^2-2

(iv)

(fg)h=(fg)(h(x))=(fg)(x2)=(f\circ g)\circ h=(f\circ g)(h(x))=(f\circ g)(x-2)=


=f(g(x2))=f(2(x2))=(2(x2))2==f(g(x-2))=f(2(x-2))=(2(x-2))^2=


=4x216x+16=4x^2-16x+16

(v)


f(gh)=f((gh)(x))=f(g(h(x)))=f\circ (g\circ h)=f((g\circ h)(x))=f(g(h(x)))=

=f(g(x2))=f(2(x2))=(2(x2))2==f(g(x-2))=f(2(x-2))=(2(x-2))^2=


=4x216x+16=4x^2-16x+16


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS