"f(x) = x^2 +1"
If "f:A\u2192B" is a function where "H\u2286B" then the inverse image of H under the function f is defined to be the set "f^{-1}(H)=\\{x\u2208A:f(x)\u2208H\\}"
So we need to find all x for which "5 \\leq f(x) \\leq 10"
"5\u2264x^2 +1\u226410"
"4\u2264x^2\u22649"
"(x-2)(x+2) \\geq 0 \\cap (x-3)(x+3) \\leq 0"
The last inequalities give us "\u22123\u2264x\u2264\u22122 \\cup 2\u2264x\u22643."
The answer: "f^{\u22121}(H)=\\{x\u2208R:(\u22123\u2264x\u2264\u22122) \\cup (2\u2264x\u22643)\\}."
Comments
Leave a comment