Question #126707
10. Let A , B, and C be sets. Show that(a) (A ∪ B) ⊆ (A ∪ B ∪ C)
(b) (A ∩ B ∩ C) ⊆ (A ∩ B)
(c) (A − B) − C ⊆ (A − C)
(d) (A − C) ∩ (C − B) = ∅
(e) (B − A) ∪ (C − B) = ∅
1
Expert's answer
2020-07-21T14:53:39-0400

(a) Let us take an arbitrary xABx\in A\cup B . We have: xAB(xA)(xB)(xA)(xB)(xC)xABCx\in A\cup B \Leftrightarrow (x\in A) \lor (x\in B)\Rightarrow (x\in A) \lor (x\in B)\lor (x\in C)\Leftrightarrow x\in A\cup B\cup C

Thus, we receive that (AB)(ABC)(A\cup B)\subseteq (A\cup B\cup C)

(b) We take an arbitrary xABCx\in A\cap B\cap C . By definition, we have

xABCxAxBxCxAxBx\in A\cap B\cap C\Leftrightarrow x\in A \land x\in B \land x\in C\Rightarrow x\in A \land x\in B\Leftrightarrow

xAB\Leftrightarrow x\in A\cap B . Thus, we receive ABCABA\cap B\cap C\subseteq A\cap B .

(c) We assume that the sign "-" denotes the subtraction of sets. Then for an arbitrary x(AB)Cx\in(A-B)-C we have:

x(AB)Cx(AB)xCxAxBxCxAxCx(AC)x\in(A-B)-C \Leftrightarrow x\in(A-B)\land x\notin C \Leftrightarrow x\in A \land x\notin B \land x\notin C \Rightarrow x\in A \land x\notin C \Rightarrow x\in (A-C)

Thus, we got: (AB)C(AC)(A-B)-C\subseteq (A-C)

(d) For an arbitrary x(AC)(CB)x\in (A-C)\cap(C-B) we have:

x(AC)(CB)x(AC)x(CB)x\in (A-C)\cap(C-B)\Leftrightarrow x\in (A-C) \land x \in (C-B) \Leftrightarrow

xAxCxCxBx\in A \land x\notin C \land x\in C \land x\notin B . The latter means that the set (AC)(CB)(A-C)\cap(C-B) is empty. Thus, (AC)(CB)=(A-C)\cap(C-B)=\varnothing

(e) Let us provide a counterexample: B=C={1},A=B=C=\{1\}, A=\varnothing .

I.e., B and C consist of one natural number and set A is empty. Then, (BA)(CB)={1}(B-A)\cup(C-B)=\{1\}

Thus, the statement is false.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS