(a) Let us take an arbitrary "x\\in A\\cup B" . We have: "x\\in A\\cup B \\Leftrightarrow (x\\in A) \\lor (x\\in B)\\Rightarrow (x\\in A) \\lor (x\\in B)\\lor (x\\in C)\\Leftrightarrow x\\in A\\cup B\\cup C"
Thus, we receive that "(A\\cup B)\\subseteq (A\\cup B\\cup C)"
(b) We take an arbitrary "x\\in A\\cap B\\cap C" . By definition, we have
"x\\in A\\cap B\\cap C\\Leftrightarrow x\\in A \\land x\\in B \\land x\\in C\\Rightarrow x\\in A \\land x\\in B\\Leftrightarrow"
"\\Leftrightarrow x\\in A\\cap B" . Thus, we receive "A\\cap B\\cap C\\subseteq A\\cap B" .
(c) We assume that the sign "-" denotes the subtraction of sets. Then for an arbitrary "x\\in(A-B)-C" we have:
"x\\in(A-B)-C \\Leftrightarrow x\\in(A-B)\\land x\\notin C \\Leftrightarrow x\\in A \\land x\\notin B \\land x\\notin C \\Rightarrow x\\in A \\land x\\notin C \\Rightarrow x\\in (A-C)"
Thus, we got: "(A-B)-C\\subseteq (A-C)"
(d) For an arbitrary "x\\in (A-C)\\cap(C-B)" we have:
"x\\in (A-C)\\cap(C-B)\\Leftrightarrow x\\in (A-C) \\land x \\in (C-B) \\Leftrightarrow"
"x\\in A \\land x\\notin C \\land x\\in C \\land x\\notin B" . The latter means that the set "(A-C)\\cap(C-B)" is empty. Thus, "(A-C)\\cap(C-B)=\\varnothing"
(e) Let us provide a counterexample: "B=C=\\{1\\}, A=\\varnothing" .
I.e., B and C consist of one natural number and set A is empty. Then, "(B-A)\\cup(C-B)=\\{1\\}"
Thus, the statement is false.
Comments
Leave a comment