Answer to Question #126707 in Discrete Mathematics for kavee

Question #126707
10. Let A , B, and C be sets. Show that(a) (A ∪ B) ⊆ (A ∪ B ∪ C)
(b) (A ∩ B ∩ C) ⊆ (A ∩ B)
(c) (A − B) − C ⊆ (A − C)
(d) (A − C) ∩ (C − B) = ∅
(e) (B − A) ∪ (C − B) = ∅
1
Expert's answer
2020-07-21T14:53:39-0400

(a) Let us take an arbitrary "x\\in A\\cup B" . We have: "x\\in A\\cup B \\Leftrightarrow (x\\in A) \\lor (x\\in B)\\Rightarrow (x\\in A) \\lor (x\\in B)\\lor (x\\in C)\\Leftrightarrow x\\in A\\cup B\\cup C"

Thus, we receive that "(A\\cup B)\\subseteq (A\\cup B\\cup C)"

(b) We take an arbitrary "x\\in A\\cap B\\cap C" . By definition, we have

"x\\in A\\cap B\\cap C\\Leftrightarrow x\\in A \\land x\\in B \\land x\\in C\\Rightarrow x\\in A \\land x\\in B\\Leftrightarrow"

"\\Leftrightarrow x\\in A\\cap B" . Thus, we receive "A\\cap B\\cap C\\subseteq A\\cap B" .

(c) We assume that the sign "-" denotes the subtraction of sets. Then for an arbitrary "x\\in(A-B)-C" we have:

"x\\in(A-B)-C \\Leftrightarrow x\\in(A-B)\\land x\\notin C \\Leftrightarrow x\\in A \\land x\\notin B \\land x\\notin C \\Rightarrow x\\in A \\land x\\notin C \\Rightarrow x\\in (A-C)"

Thus, we got: "(A-B)-C\\subseteq (A-C)"

(d) For an arbitrary "x\\in (A-C)\\cap(C-B)" we have:

"x\\in (A-C)\\cap(C-B)\\Leftrightarrow x\\in (A-C) \\land x \\in (C-B) \\Leftrightarrow"

"x\\in A \\land x\\notin C \\land x\\in C \\land x\\notin B" . The latter means that the set "(A-C)\\cap(C-B)" is empty. Thus, "(A-C)\\cap(C-B)=\\varnothing"

(e) Let us provide a counterexample: "B=C=\\{1\\}, A=\\varnothing" .

I.e., B and C consist of one natural number and set A is empty. Then, "(B-A)\\cup(C-B)=\\{1\\}"

Thus, the statement is false.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS