Question #123555
Part (a): Let A and B are any sets then show that A-(A∩B)=(A∩A^c)∪(A∩B^c) by using membership table.
Part (b): Draw Venn diagram to describe sets A, B, and C that satisfy the given conditions.

A∩B≠ϕ,B∩C≠ϕ,A∩C=ϕ,A⊈B,C⊈B.
1
Expert's answer
2020-06-22T18:19:11-0400

(a):

ABABA(AB)0000010010011110\def\arraystretch{1.5} \begin{array}{c:c} A & B & A\cap B & A-(A\cap B) \\ \hline 0 & 0 & 0 & 0 \\ 0 &1 & 0 & 0 \\ 1 & 0 & 0& 1 \\ \hdashline 1 &1 & 1 & 0 \\ \hdashline \end{array}

ABACBCAACABC(AAC)(ABC)0011000011000010010111100000\def\arraystretch{1.5} \begin{array}{c:c} A & B & A^C & B^C & A\cap A^C & A\cap B^C & (A\cap A^C)\cup (A\cap B^C) \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 0\\ \hdashline 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1& 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array}

A(AB)=(AAC)(ABC)A-(A\cap B)=(A\cap A^C)\cup (A\cap B^C)


(b)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS