Question #123222
5. (i) Prove that 12 + 32 + 52 + ... + (2n + 1)2 = (n+1) 3 (2n + 1)(2n + 3), whenever n is a nonnegative integer.
(ii) Prove that 3 + 3.5 + 3.52 + ... + 3.5n = 3(5n+1 - 1) / 4, whenever n is a nonnegative integer.
1
Expert's answer
2020-06-22T18:15:52-0400

i) 12+32+52+...+(2n+1)2=(n+1)(2n+1)(2n+3)31^2+3^2+5^2+...+(2n+1)^2=\frac {(n+1)(2n+1)(2n+3)}{3}


Basis step: n=0n=0

12=1133=11^2=\frac {1\cdot1\cdot3}{3}=1


Inductive Step: Assume that n=kn=k

Inductive Hypothesis:

12+32+52+...+(2k+1)2=(k+1)(2k+1)(2k+3)31^2+3^2+5^2+...+(2k+1)^2=\frac {(k+1)(2k+1)(2k+3)}{3}


Prove that

12+32+52+...+(2k+1)2+(2k+3)2=(k+2)(2k+3)(2k+5)31^2+3^2+5^2+...+(2k+1)^2+(2k+3)^2=\frac {(k+2)(2k+3)(2k+5)}{3}


We have:

12+32+52+...+(2k+1)2+(2k+3)2=(k+1)(2k+1)(2k+3)3+(2k+3)2=1^2+3^2+5^2+...+(2k+1)^2+(2k+3)^2=\frac {(k+1)(2k+1)(2k+3)}{3}+(2k+3)^2=

=(2k+3)(k+1)(2k+1)(2k+3)+3(2k+3)3=(2k+3)(2k2+9k+10)3==(2k+3)\frac {(k+1)(2k+1)(2k+3)+3(2k+3)}{3}=\frac {(2k+3)(2k^2+9k+10)}{3}=

=(2k+3)(2k+5)(2k+2)3=\frac {(2k+3)(2k+5)(2k+2)}{3}

Therefore, the given formula is truth.


ii) 3+35+352+...+35n=3(5n+11)43+3\cdot5+3\cdot5^2+... +3\cdot5^n=\frac {3(5^{n+1}-1)}{4}


Basis Step: n=0n=0

3=3(51)4=33=\frac {3(5-1)}{4}=3


Inductive step: Assume that n=kn=k

Inductive Hypothesis:

3+35+352+...+35k=3(5k+11)43+3\cdot5+3\cdot5^2+... +3\cdot5^k=\frac {3(5^{k+1}-1)}{4}


Prove that

3+35+352+...+35k+35k+1=3(5k+21)43+3\cdot5+3\cdot5^2+... +3\cdot5^k+3\cdot5^{k+1}=\frac {3(5^{k+2}-1)}{4}


We have:

3+35+352+...+35k+35k+1=3(5k+11)4+35k+1=3+3\cdot5+3\cdot5^2+... +3\cdot5^k+3\cdot5^{k+1}=\frac {3(5^{k+1}-1)}{4}+3\cdot5^{k+1}=

=3(5k+11)+435k+14=3(5k+11+45k+1)4==\frac {3(5^{k+1}-1)+4\cdot3\cdot5^{k+1}}{4}=\frac {3(5^{k+1}-1+4\cdot5^{k+1})}{4}=

=3(5k+1(1+4)1)4=3(5k+21)4=\frac {3(5^{k+1}(1+4)-1)}{4}=\frac {3(5^{k+2}-1)}{4}

Therefore, the given formula is truth.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS