i) "1^2+3^2+5^2+...+(2n+1)^2=\\frac {(n+1)(2n+1)(2n+3)}{3}"
Basis step: "n=0"
"1^2=\\frac {1\\cdot1\\cdot3}{3}=1"
Inductive Step: Assume that "n=k"
Inductive Hypothesis:
"1^2+3^2+5^2+...+(2k+1)^2=\\frac {(k+1)(2k+1)(2k+3)}{3}"
Prove that
"1^2+3^2+5^2+...+(2k+1)^2+(2k+3)^2=\\frac {(k+2)(2k+3)(2k+5)}{3}"
We have:
"1^2+3^2+5^2+...+(2k+1)^2+(2k+3)^2=\\frac {(k+1)(2k+1)(2k+3)}{3}+(2k+3)^2="
"=(2k+3)\\frac {(k+1)(2k+1)(2k+3)+3(2k+3)}{3}=\\frac {(2k+3)(2k^2+9k+10)}{3}="
"=\\frac {(2k+3)(2k+5)(2k+2)}{3}"
Therefore, the given formula is truth.
ii) "3+3\\cdot5+3\\cdot5^2+... +3\\cdot5^n=\\frac {3(5^{n+1}-1)}{4}"
Basis Step: "n=0"
"3=\\frac {3(5-1)}{4}=3"
Inductive step: Assume that "n=k"
Inductive Hypothesis:
"3+3\\cdot5+3\\cdot5^2+... +3\\cdot5^k=\\frac {3(5^{k+1}-1)}{4}"
Prove that
"3+3\\cdot5+3\\cdot5^2+... +3\\cdot5^k+3\\cdot5^{k+1}=\\frac {3(5^{k+2}-1)}{4}"
We have:
"3+3\\cdot5+3\\cdot5^2+... +3\\cdot5^k+3\\cdot5^{k+1}=\\frac {3(5^{k+1}-1)}{4}+3\\cdot5^{k+1}="
"=\\frac {3(5^{k+1}-1)+4\\cdot3\\cdot5^{k+1}}{4}=\\frac {3(5^{k+1}-1+4\\cdot5^{k+1})}{4}="
"=\\frac {3(5^{k+1}(1+4)-1)}{4}=\\frac {3(5^{k+2}-1)}{4}"
Therefore, the given formula is truth.
Comments
Leave a comment