Answer to Question #122161 in Discrete Mathematics for Kavee

Question #122161
2. Let P(x) and Q(x) be the statements x3 < 50 and x+2 < 5 respectively. Find the truth values of following quantifications, where the domain consists of all real numbers.
(i) ∃x P(x)
(ii) ∀x P(x)
(iii) ∀x Q(x)
(iv) ∃x Q(x)
(v) ∀x (¬P(x))
(vi) ∃x (¬Q(x))
(vii) ∃x> 0 (P(x))
(viii) ∀x> 0 (¬Q(x))
(ix) ∀x (P(x) ∨ Q(x))
(x) ∃x (P(x) ∧¬Q(x))
1
Expert's answer
2020-06-16T19:18:50-0400

i) truth (ex.: 23<502^3<50 )

ii) false (ex.: 43>504^3>50 )

iii) false (ex.: 8+2>58+2>5 )

iv) truth (ex.: 1+2<51+2<5 )

v) ¬P(x):{x350}\neg P(x):\{x^3\geq50\}

Answer: false (ex.: 23<502^3<50 )

vi) ¬Q(x):{x+25}\neg Q(x):\{x+2\geq5\}

Answer: truth (ex.: 3+2=53+2=5 )

vii) truth (ex.: 23<502^3<50 )

viii) false (ex.: 1+2<51+2<5 )

ix) P(x)Q(x):{x3<50P(x)\lor Q(x):\{x^3<50 or x+2<5}x+2<5\}

Answer: false ( ex.: 43>504^3>50 and 4+2>54+2>5 )

x) P(x)¬Q(x):{x3<50P(x)\land\neg Q(x): \{x^3<50 and x+25}x+2\geq5\}

Answer: truth (ex.: 33<503^3<50 and 3+2=53+2=5 )


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment