Let the statement P(n)=4n−1>n2
Now, 43−1=42=16>32 , So P(n) is true for n=3 .
Let P(n) is true for n=k ⟹4k−1>k2 .
Now, prove P(n) is true for n=k+1.
4(k+1)−1=4×4k−1>4×k2>k2+2k2+k2>k2+2k+1 because k≥3 .
Hence, 4(k+1)−1>(k+1)2
Hence, using Principal of Mathematical Induction, 4n−1>n2 for all n≥3 .
Comments