First we show that given relation R is an equivalence relation:
"1.\\ \\forall x\\ xRx: \\quad 3 \\mid 0 \\implies 3 \\mid x^2 - x^2"
"2.\\ xRy \\implies yRx : \\quad 3 \\mid x^2 - y^2 \\implies 3 \\mid-(x^2 - y^2) \\implies 3 \\mid y^2 - x^2"
"3.\\ xRy, yRz \\implies xRz: \\ 3 \\mid x^2 - y^2 ,\\ 3 \\mid y^2 - z^2 \\implies \\\\ \\implies 3 \\mid (x^2 - y^2) + (y^2 - z^2) \\implies 3 \\mid x^2 - z^2"
Hence by definition it is indeed an equivalence relation.
Now we find the equivalence classes:
"3 \\mid x^2 - y^2 \\\\\n3 \\mid (x-y)(x+y) \\\\\n3 \\mid x - y \\quad or \\quad 3 \\mid x+y"
"x = y + 3k \\quad or \\quad x = -y + 3k, \\quad k \\in \\mathbb{Z}"
We can see from here, that for every "y \\in \\mathbb{Z}" the corresponding equivalence class is:
"[y] = \\{ x \\in \\mathbb{Z} \\mid x = \\pm y + 3k, \\ k \\in \\mathbb{Z} \\}"
Comments
Leave a comment