1 . Factors of "231" are "1,3,7,11,21,33,77"
In set notation",A=" {"1,3,7,11,21,33,77"}
1 . These numbers are in succesive powers of 3.
So,in set builder form,"A=" {"x\\in 3^n | 6\\geqslant n \\geqslant 0 \\ \\ \\& \\ n\\neq1" }
2 .A={"x\\in Q|-4.1<x<3.2" }
3 .As the given numbers are negative even numbers,this means they must be divisible by 2,So "A=" {"7n\\ | n<0\\ \\&\\ n=0\\, mod\\, 2" }
4 .Given,"A =" {"a, b, c, 1, 2, 3, q, r, s" }. B = {a, 1, r}, and C = {a, 3, q, x, y, z}
1 . Yes "3 \\in A"
2 . False
3 . {a,1,r} "\\in" "A" .So,Yes,B ⊂A
4 . False,As we know "1\\in A,3\\in A" but {1,3} does not belong to A.
5 . Yes {"{1,3}" } as a set is a subset of A .So,{1,3}⊂A
6 . Every set is a not a subset,but a proper subset of itself .Hence,it is not true.
7 . Every set is a proper subset of itself.So,B ⊆B is true.
8 ."\\phi" is a subset of every set.Hence,∅ ⊆C
Let A, B, and C be as in 4 and let U = {1, 2, 3, 5, 7, 8, 9, a, b, c, d, e, f, g, x, y, z}.
1. A ∩B={a,1,r}
2 .A ∩C={a,3,q}
3 .A U B={a, b, c, 1, 2, 3, q, r, s}
4 .A U C={a, b, c, 1, 2, 3, q, r, s,x,y,z}
5 .A-B={ b, c, 2, 3, q,s}
6 .A -C={ b, c, 1, 2, r, s}
7 .B-A="\\phi"
8 .C-A={x,y,z}
9 ."A^c=" {5,7,8,9,d,e,f,x,y,z}
10 .A⨁C"=(A\u2229C^c)U(C\u2229A^c)" ={b,c,1,2,r,s,x,y,z}
Comments
Leave a comment