Answer to Question #101186 in Discrete Mathematics for LUDNOR
given 2 sets A and B, use membership table to show that (A-B)∪(B-A)=(A∪B) -(A∩B)
1
2020-01-10T08:24:52-0500
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n A & B & A-B & B-A & (A-B\\cup (B-A) \\\\ \\hline\n 1 & 1 & 0 & 0 & 0 \\\\ \\hline\n 1 & 0 & 1 & 0 & 1\\\\ \\hline\n 0 & 1 & 0 & 1 & 1\\\\ \\hline\n 0 & 0 & 0 & 0 & 0\n\\end{array}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n A\\cup B & A\\cap B & (A\\cup B)-(A\\cap B) \\\\ \\hline\n 1 & 1 & 0 \\\\ \\hline\n 1 & 0 & 1 \\\\ \\hline\n 1 & 0 & 1 \\\\ \\hline\n 0 & 0 & 0 \n\\end{array}" Hence
"(A-B)\\cup(B-A)=(A\\cup B)-(A\\cap B)"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment