Question #101186
given 2 sets A and B, use membership table to show that (A-B)∪(B-A)=(A∪B) -(A∩B)
1
Expert's answer
2020-01-10T08:24:52-0500
ABABBA(AB(BA)11000101010101100000\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} A & B & A-B & B-A & (A-B\cup (B-A) \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 1\\ \hline 0 & 1 & 0 & 1 & 1\\ \hline 0 & 0 & 0 & 0 & 0 \end{array}


ABAB(AB)(AB)110101101000\def\arraystretch{1.5} \begin{array}{c:c:c} A\cup B & A\cap B & (A\cup B)-(A\cap B) \\ \hline 1 & 1 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 \\ \hline 0 & 0 & 0 \end{array}

Hence


(AB)(BA)=(AB)(AB)(A-B)\cup(B-A)=(A\cup B)-(A\cap B)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS