2020-01-09T13:22:36-05:00
given 2 sets A and B, use membership table to show that (A-B)∪(B-A)=(A∪B) -(A∩B)
1
2020-01-10T08:24:52-0500
A B A − B B − A ( A − B ∪ ( B − A ) 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
A & B & A-B & B-A & (A-B\cup (B-A) \\ \hline
1 & 1 & 0 & 0 & 0 \\ \hline
1 & 0 & 1 & 0 & 1\\ \hline
0 & 1 & 0 & 1 & 1\\ \hline
0 & 0 & 0 & 0 & 0
\end{array} A 1 1 0 0 B 1 0 1 0 A − B 0 1 0 0 B − A 0 0 1 0 ( A − B ∪ ( B − A ) 0 1 1 0
A ∪ B A ∩ B ( A ∪ B ) − ( A ∩ B ) 1 1 0 1 0 1 1 0 1 0 0 0 \def\arraystretch{1.5}
\begin{array}{c:c:c}
A\cup B & A\cap B & (A\cup B)-(A\cap B) \\ \hline
1 & 1 & 0 \\ \hline
1 & 0 & 1 \\ \hline
1 & 0 & 1 \\ \hline
0 & 0 & 0
\end{array} A ∪ B 1 1 1 0 A ∩ B 1 0 0 0 ( A ∪ B ) − ( A ∩ B ) 0 1 1 0 Hence
( A − B ) ∪ ( B − A ) = ( A ∪ B ) − ( A ∩ B ) (A-B)\cup(B-A)=(A\cup B)-(A\cap B) ( A − B ) ∪ ( B − A ) = ( A ∪ B ) − ( A ∩ B )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments