"((y')^2+2y'ycotx-y^2)\/y^2=0"
"(y'\/y)^2+2y'cotx\/y-1=0"
"z=y'\/y"
"z^2+2zcotx-1=0"
"D=(2cotx)^2+4=4(1+(cotx)^2)=4\/(sinx)^2"
So we have two cases.
1)
"y'\/y=(1-cosx)\/sinx"
"dy\/y=(1-cosx)dx\/sinx"
"\\intop dy\/y=\\intop (1-cosx)dx\/sinx"
"lny=\\intop (1-cosx)dx\/sinx"
"\\intop (1-cosx)dx\/sinx=-\\intop (1-cosx)d(cosx)\/(sinx)^2="
"=-\\intop (1-cosx)d(cosx)\/(1-(cosx)^2)=-\\intop d(cosx)\/(1+cosx)="
"=-ln(1+cosx)+C"
So we get:
"y(x)=c\/(1+cosx)"
2)
"lny=-\\intop (1+cosx)dx\/sinx=-ln(1-cosx)+C"
"lny=ln(1\/(1-cosx)+C"
"y(x)=c\/(1-cosx)"
Comments
Leave a comment