Let
Consider
"y^*=c_1(2x+2)+c_2(-{x^2 \\over 2})=(-{c_2 \\over 2})x^2+(2c_1)x+2c_1"
where c1, c2 are arbitrary constants.
Then
Consider
"x(2c_1-xc_2)+{(2c_1-xc_2)^2 \\over 2}=2xc_1-x^2c_2+2c_1^2-2xc_1c_2+{1 \\over 2}x^2c_2^2="
"=({1 \\over 2}c_2^2-c_2)x^2+(2c_1-2c_1c_2)x+2c_1^2"
The necessary conditions are
"c_2(c_2-1)=0""c_1c_2=0""c_1(c_1-1)=0"
If "c_1=0," then "c_2=0" or "c_2=1".
If "c_2=0," then "c_1=0" or "c_1=1."
We have three pairs for "(c_1, c_2)"
The sum "y_1+y_2" is not the solution of the differential equation.
Comments
Leave a comment