Question #88295
If y1 = 2x + 2and y2 = −x^2/2 are the solutions of the equation y = x y′+(y')^2/ 2then are the constant multiples c1y1and c2y2 , where c1, c2 are arbitrary, also the solutions of the given de? is the sum y1+ y2 a solution? Justify your answer.
1
Expert's answer
2019-04-22T10:23:20-0400

Let


y1=2x+2,y2=x22y_1=2x+2, y_2=-{x^2 \over 2}

Consider


y=c1y1+c2y2y^*=c_1y_1+c_2y_2

y=c1(2x+2)+c2(x22)=(c22)x2+(2c1)x+2c1y^*=c_1(2x+2)+c_2(-{x^2 \over 2})=(-{c_2 \over 2})x^2+(2c_1)x+2c_1

where c1, c2 are arbitrary constants.

Then


(y)=c1(y1)+c2(y2)=c1(2x+2)+c2(x22)=2c1xc2(y^*)'=c_1(y_1)'+c_2(y_2)'=c_1(2x+2)'+c_2(-{x^2 \over 2})'=2c_1-xc_2

Consider


x(y)+((y))22x(y^*)'+{((y^*)')^2 \over 2}

x(2c1xc2)+(2c1xc2)22=2xc1x2c2+2c122xc1c2+12x2c22=x(2c_1-xc_2)+{(2c_1-xc_2)^2 \over 2}=2xc_1-x^2c_2+2c_1^2-2xc_1c_2+{1 \over 2}x^2c_2^2=

=(12c22c2)x2+(2c12c1c2)x+2c12=({1 \over 2}c_2^2-c_2)x^2+(2c_1-2c_1c_2)x+2c_1^2

The necessary conditions are


12c22c2=c222{1 \over 2}c_2^2-c_2=-{c_2^2 \over 2}2c12c1c2=2c12c_1-2c_1c_2=2c_12c12=2c12c_1^2=2c_1

c2(c21)=0c_2(c_2-1)=0c1c2=0c_1c_2=0c1(c11)=0c_1(c_1-1)=0

If c1=0,c_1=0, then c2=0c_2=0 or c2=1c_2=1.

If c2=0,c_2=0, then c1=0c_1=0 or c1=1.c_1=1.

We have three pairs for (c1,c2)(c_1, c_2)


(0,0),(0,1),(1,0)(0, 0), (0, 1), (1, 0)

The sum y1+y2y_1+y_2 is not the solution of the differential equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS