Answer to Question #344428 in Differential Equations for Zainab

Question #344428

 An RCL circuit connected in series has R = 10 ohms, C = 10^2 farad, L = 1.5 henry, and an applied voltage E = 12 volts. Assuming no initial current and no initial charge at t = 0 when the voltage is first applied, find the subsequent current in the system.


1
Expert's answer
2022-05-30T03:35:06-0400
Lq+Rq+qC=ELq''+Rq'+\dfrac{q}{C}=E

1.5q+10q+0.01q=121.5q''+10q'+0.01q=12

Homogeneous differential equation


1.5q+10q+0.01q=01.5q''+10q'+0.01q=0

Corresponding (auxiliary) equation


1.5r2+10r+0.01=01.5r^2+10r+0.01=0

r=10±(102)4(1.5)(0.01)2(1.5)r=\dfrac{-10\pm\sqrt{(10^2)-4(1.5)(0.01)}}{2(1.5)}

r1=1099.943r_1=\dfrac{-10-\sqrt{99.94}}{3}

r2=10+99.943r_2=\dfrac{-10+\sqrt{99.94}}{3}

The general solution of the homogeneous differential equation is


q=c1e(10+99.94)t/3+c2e(1099.94)t/3q=c_1 e^{-(10+\sqrt{99.94})t/3}+c_2 e^{-(10-\sqrt{99.94})t/3}

The general solution of the non homogeneous differential equation is


q=c1e(10+99.94)t/3+c2e(1099.94)t/3+1200q=c_1 e^{-(10+\sqrt{99.94})t/3}+c_2 e^{-(10-\sqrt{99.94})t/3}+1200

q(0)=0=>c1+c2+1200=0q(0)=0=>c_1+c_2+1200=0

c2=1200c1c_2=-1200-c_1

i(t)=q=10+99.943(c1e(10+99.94)t/3)i(t)=q'=-\dfrac{10+\sqrt{99.94}}{3}(c_1 e^{-(10+\sqrt{99.94})t/3})

1099.943(c2e(1099.94)t/3)-\dfrac{10-\sqrt{99.94}}{3}(c_2 e^{-(10-\sqrt{99.94})t/3})

i(0)=0i(0)=0

=>10+99.943c11099.943c2=0=>-\dfrac{10+\sqrt{99.94}}{3}c_1-\dfrac{10-\sqrt{99.94}}{3}c_2=0


10c199.94c1+12000+10c1-10c_1-\sqrt{99.94}c_1+12000+10c_1

120099.9499.94c1=0-1200\sqrt{99.94}-\sqrt{99.94}c_1=0


c1=600(1099.9499.94)c_1=600(\dfrac{10-\sqrt{99.94}}{\sqrt{99.94}})

c2=600(10+99.9499.94)c_2=-600(\dfrac{10+\sqrt{99.94}}{\sqrt{99.94}})

i(t)=1299.94e(10+99.94)t/3i(t)=-\dfrac{12}{\sqrt{99.94}}e^{-(10+\sqrt{99.94})t/3}

+1299.94e(1099.94)t/3+\dfrac{12}{\sqrt{99.94}} e^{-(10-\sqrt{99.94})t/3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment