Find the orthogonal trajectories of the following curves (where a is a parameter). r = a(1 + sin θ)
Find the orthogonal trajectories of the following curves:
"r=a\\left(1+\\sin{\\theta}\\right)" ,
Solution:
"r\\prime=a\\cos{\\theta}" "\\Longrightarrow a=\\frac{r\\prime}{\\cos{\\theta}}"
then "r=\\frac{r\\prime}{\\cos{\\theta}}\\left(1+\\sin{\\theta}\\right)" .
For orthogonal trajectories in polar coordinates substitution is used: "r\\prime\\rightarrow-\\frac{r^2}{r\\prime}"
Then "r=-\\frac{r^2}{r\\prime}\\frac{1+\\sin{\\theta}}{\\cos{\\theta}}" ,
"\\frac{dr}{d\\theta}=-r\\frac{1+\\sin{\\theta}}{\\cos{\\theta}}" ,
"\\int\\frac{dr}{r}=-\\int{\\frac{1+\\sin{\\theta}}{\\cos{\\theta}}d\\theta}" ,
"\\ln{r}=-\\int{\\frac{1+\\sin{\\theta}}{\\cos{\\theta}}d\\theta}" ,
"\\int{\\frac{1+\\sin{\\theta}}{\\cos{\\theta}}d\\theta}=\\int{\\frac{\\left(1+\\sin{\\theta}\\right)\\cos{\\theta}}{{cos}^2\\theta}d\\theta}=\\int\\frac{\\left(1+\\sin{\\theta}\\right)d\\left(\\sin{x}\\right)}{1-{sin}^2\\theta}=\\int\\frac{d\\left(\\sin{x}\\right)}{1-\\sin{x}}"
"-\\int\\frac{d\\left(1-\\sin{x}\\right)}{1-\\sin{x}}\u00ac =-\\ln{\\left(1-\\sin{x}\\right)}+\\ln{C}" .
Answer:
"r=\u0421(1-sin\u03b8)"
Comments
Leave a comment