Inverse Laplace Transforms
Find L^-1 {F(s)} when F(s) is given by
5. 1/(s+1)(s+2)(s^2+2s+10)
5.
"+\\dfrac{(Cs+D)(s+1)(s+2)}{(s+1)(s+2)(s^2+2s+10)}"
"s=-1:A(1-2+10)=1"
"s=-2:-B(4-4+10)=1"
"s=0: 20A+10B+2D=1"
"A=\\dfrac{1}{9}, B=-\\dfrac{1}{10}, D=-\\dfrac{1}{9}, C=-\\dfrac{1}{90}"
"=\\dfrac{1}{9}L^{-1}(\\dfrac{1}{s+1})-\\dfrac{1}{10}L^{-1}(\\dfrac{1}{s+2})"
"-\\dfrac{1}{90}L^{-1}(\\dfrac{s+1}{(s+1)^2+3^2})-\\dfrac{1}{10}L^{-1}(\\dfrac{1}{(s+1)^2+3^2})"
Comments
Leave a comment