Question #317946

Solve by method of variation of parameters.


d^y/dx^2 + dy/dx + 1 = e^x



1
Expert's answer
2022-03-28T06:19:10-0400

First let’s find a fundamental set of solutions for

y’’+y=0y’’+y’=0

y1=1y_1=1; y2=exy_2=e^{-x}

Then a general solution to the nonhomogeneous differential equation is

y(x)=y1y2(ex1)dxW(y1,y2)+y(x)=-y_1\int\frac{y_2(e^x-1)dx}{W(y_1,y_2)}+y2y1(ex1)dxW(y1,y2)=y_2\int\frac{y_1(e^x-1)dx}{W(y_1,y_2)}=

(1ex)dxy1y2y2y1+-\int\frac{(1-e^{-x})dx}{y_1y_2’-y_2y_1’}+ex(ex1)dxy1y2y2y1=e^{-x}\int\frac{(e^{x}-1)dx}{y_1y_2’-y_2y_1’}=(1ex)dxex\int\frac{(1-e^{-x})dx}{e^{-x}}-ex(ex1)dxex=e^{-x}\int\frac{(e^{x}-1)dx}{e^{-x}}=

exx+c1ex(12e2xexc2)=e^x-x+c_1-e^{-x}(\frac12e^{2x}-e^x-c_2)=

12exx+1+c1+c2ex\frac12e^{x}-x+1+c_1+c_2e^{-x}

Answer: y(x)=c1+c2ex+12exx+1y(x)=c_1+c_2e^{-x}+\frac12e^{x}-x+1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS