First let’s find a fundamental set of solutions for
y’’+y’=0
y1=1; y2=e−x
Then a general solution to the nonhomogeneous differential equation is
y(x)=−y1∫W(y1,y2)y2(ex−1)dx+y2∫W(y1,y2)y1(ex−1)dx=
−∫y1y2’−y2y1’(1−e−x)dx+e−x∫y1y2’−y2y1’(ex−1)dx=∫e−x(1−e−x)dx−e−x∫e−x(ex−1)dx=
ex−x+c1−e−x(21e2x−ex−c2)=
21ex−x+1+c1+c2e−x
Answer: y(x)=c1+c2e−x+21ex−x+1.
Comments