Solve by method of variation of parameters.
d^y/dx^2 + dy/dx + 1 = e^x
First let’s find a fundamental set of solutions for
"y\u2019\u2019+y\u2019=0"
"y_1=1"; "y_2=e^{-x}"
Then a general solution to the nonhomogeneous differential equation is
"y(x)=-y_1\\int\\frac{y_2(e^x-1)dx}{W(y_1,y_2)}+""y_2\\int\\frac{y_1(e^x-1)dx}{W(y_1,y_2)}="
"-\\int\\frac{(1-e^{-x})dx}{y_1y_2\u2019-y_2y_1\u2019}+""e^{-x}\\int\\frac{(e^{x}-1)dx}{y_1y_2\u2019-y_2y_1\u2019}=""\\int\\frac{(1-e^{-x})dx}{e^{-x}}-""e^{-x}\\int\\frac{(e^{x}-1)dx}{e^{-x}}="
"e^x-x+c_1-e^{-x}(\\frac12e^{2x}-e^x-c_2)="
"\\frac12e^{x}-x+1+c_1+c_2e^{-x}"
Answer: "y(x)=c_1+c_2e^{-x}+\\frac12e^{x}-x+1".
Comments
Leave a comment