For an electric circuit with L=0.05 henry, R=20 ohms and C=100*10^-6 farad, the applied emf is 100 volts. Prove that the charge q at time 't' is given by q(t) =0.01-e^(-200t) [0.01 cos(400t) +0.02 sin(400t) ] if initially q=0 and i=0.
Solution.
Due to Kirchhoff's low:
"U_L+U_R+U_C=E" (1)
where
"U_L=L\\frac{di}{dt}=L\\frac{d^2q}{dt^2}" ; "U_R=iR=\\frac{dq}{dt}R" ; "U_C=\\frac1Cq" .
"L\\frac{d^2q}{dt^2}+R\\frac{dq}{dt}+\\frac 1C q=E"
"\\frac{d^2q}{dt^2}+\\frac RL\\frac{dq}{dt}+\\frac {1}{LC} q=\\frac EL"
"\\frac RL=\\frac {20}{0.05}=400"; "\\frac {1}{LC}=\\frac {1}{0.05\\cdot 100\\cdot 10^{-6}}=2\\cdot10^5"; "\\frac EL=\\frac{100}{0.05}=2000"
"\\frac{d^2q}{dt^2}+400\\frac{dq}{dt}+2\\cdot10^5q=2000" (2)
"\\frac{dq}{dt}=" "\\frac{d}{dt}(0.01-e^{-200t} [0.01 \\cos(400t) +0.02 \\sin(400t) ])" "=e^{-200 t} (-6 \\cos(400 t) + 8 \\sin(400 t))";
"\\frac{d^2q}{dt^2}=400 e^{-200 t} (11 \\cos(400 t) + 2 \\sin(400 t))".
Substitution all these into (2) gives:
"400 e^{-200 t} (11 \\cos(400 t) + 2 \\sin(400 t))+" "400\\cdot e^{-200 t} (-6 \\cos(400 t) + 8 \\sin(400 t))+2\\cdot 10^5 \\cdot" "(0.01-e^{-200t} [0.01 \\cos(400t) +0.02 \\sin(400t) ])=" "2000"
We see that the left side is equal to the right one, which means "q(t)" satisfies Kirchhoff's law.
Comments
Leave a comment