Find u from the differential equation and initial condition.
du/dt= e^(1.5t-1.3u), u=0 1.3
Find u=?
"\\frac{du}{dt} = e^{1.5t-1.3u}" , "u(0) = 1.3"
"=>\\frac{du}{dt}=e^{1.5t}e^{-1.3u}"
"=>e^{1.3u}du=e^{1.5t}dt"
Interacting both sides, we have;
"=>\\frac{e^{1.3u}}{1.3}=\\frac{e^{1.5t}}{1.5} + c"
Recall that "u(0)=1.3"
"=>\\frac{e^{1.3(1.3)}}{1.3}=\\frac{e^{1.5(0)}}{1.5} + c"
"=>\\frac{e^{1.69}}{1.3}=\\frac{e^{0}}{1.5} + c"
"=>4.17=0.67+c"
"=>c=4.17-0.67=3.5"
"=>\\frac{e^{1.3u}}{1.3}=\\frac{e^{1.5t}}{1.5}+3.5"
Multiply through by 1.3. we have;
"=>e^{1.3u}=\\frac{13e^{1.5t}}{15}+\\frac{91}{20}"
"=>e^{1.3u}=\\frac{52e^{1.5t}+273}{60}"
Take natural log of both sides
"=>lne^{1.3u}=ln(\\frac{52e^{1.5t}+273}{60})"
"=>1.3u=ln(\\frac{52e^{1.5t}+273}{60})"
"=>u=\\frac{10ln(\\frac{52e^{1.5t}+273}{60})}{13}"
Comments
Leave a comment