Answer to Question #283920 in Differential Equations for Torjan

Question #283920

Solve (𝐷


2 − 3𝐷 + 2)𝑦 = 𝑥


2 + sin 𝑥 where 𝐷 =


𝑑


𝑑𝑥



1
Expert's answer
2022-01-03T16:48:20-0500

Corresponding homogeneous equation


(𝐷23𝐷+2)𝑦=0(𝐷^2 − 3𝐷 + 2)𝑦 =0

Characteristic (auxiliary) equation


r23r+2=0r^2-3r+2=0

(r1)(r2)=0(r-1)(r-2)=0

r1=1,r2=2r_1=1, r_2=2

The general solution of the homogeneous differential equation


yh=c1ex+c2e2xy_h=c_1e^x+c_2e^{2x}

Find the partial solution of the nonhomogeneous differential equation in the form


y1(x)=Ax2+Bx+C+Dcosx+Esinxy_1(x)=Ax^2+Bx+C+D\cos x+E\sin x

y1=2Ax+BDsinx+Ecosxy_1'=2Ax+B-D\sin x+E\cos x

y1=2ADcosxEsinxy_1''=2A-D\cos x-E\sin x

Substitute


2ADcosxEsinx6Ax3B2A-D\cos x-E\sin x-6Ax-3B

+3Dsinx3Ecosx+2Ax2+2Bx+2C+3D\sin x-3E\cos x+2Ax^2+2Bx+2C

+2Dcosx+2Esinx=x2+sinx+2D\cos x+2E\sin x=x^2+\sin x

x2:2A=1x^2: 2A=1

x1:6A+2B=0x^1: -6A+2B=0

x0:2A3B+2C=0x^0:2A-3B+2C=0

cosx:D3E=0\cos x:D-3E=0

sinx:E+3D=1\sin x: E+3D=1

A=12,B=32,C=74A=\dfrac{1}{2}, B=\dfrac{3}{2}, C=\dfrac{7}{4}

D=310,E=110D=\dfrac{3}{10}, E=\dfrac{1}{10}

The partial solution of the nonhomogeneous differential equation is


y1(x)=12x2+32x+74+310cosx+110sinxy_1(x)=\dfrac{1}{2}x^2+\dfrac{3}{2}x+\dfrac{7}{4}+\dfrac{3}{10}\cos x+\dfrac{1}{10}\sin x

The general solution of the nonhomogeneous differential equation is


y(x)=c1ex+c2e2x+12x2+32x+74y(x)=c_1e^x+c_2e^{2x}+\dfrac{1}{2}x^2+\dfrac{3}{2}x+\dfrac{7}{4}

+310cosx+110sinx+\dfrac{3}{10}\cos x+\dfrac{1}{10}\sin x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment