Corresponding homogeneous equation
(D2−3D+2)y=0 Characteristic (auxiliary) equation
r2−3r+2=0
(r−1)(r−2)=0
r1=1,r2=2 The general solution of the homogeneous differential equation
yh=c1ex+c2e2x Find the partial solution of the nonhomogeneous differential equation in the form
y1(x)=Ax2+Bx+C+Dcosx+Esinx
y1′=2Ax+B−Dsinx+Ecosx
y1′′=2A−Dcosx−Esinx Substitute
2A−Dcosx−Esinx−6Ax−3B
+3Dsinx−3Ecosx+2Ax2+2Bx+2C
+2Dcosx+2Esinx=x2+sinx
x2:2A=1
x1:−6A+2B=0
x0:2A−3B+2C=0
cosx:D−3E=0
sinx:E+3D=1
A=21,B=23,C=47
D=103,E=101The partial solution of the nonhomogeneous differential equation is
y1(x)=21x2+23x+47+103cosx+101sinx The general solution of the nonhomogeneous differential equation is
y(x)=c1ex+c2e2x+21x2+23x+47
+103cosx+101sinx
Comments
Leave a comment