Question #283606

solve the following differential equation: 2x^2y(d^2y/dx^2)+4y^2=x^2(dy/dx)^2+2xy(dy/dx)

1
Expert's answer
2021-12-31T11:34:33-0500

2x2yy+4y2=x2(y)2+2xyy2x^2yy''+4y^2=x^2(y')^2+2xyy'


y=x2z2y=x^2z^2

then:

y=x2z2y=x^2z^2

y=2xz2+2x2zzy'=2xz^2+2x^2zz'

y=2z2+4xzz+4xzz+2x2((z)2+zz)y''=2z^2+4xzz'+4xzz'+2x^2((z')^2+zz'')


2x2x2z2(2z2+4xzz+4xzz+2x2((z)2+zz))+4x4z4=2x^2x^2z^2(2z^2+4xzz'+4xzz'+2x^2((z')^2+zz''))+4x^4z^4=

=x2(2xz2+2x2zz)2+2xx2z2(2xz2+2x2zz)=x^2(2xz^2+2x^2zz')^2+2xx^2z^2(2xz^2+2x^2zz')


x2z2(z2+4xzz+x2((z)2+zz))+x2z4=x^2z^2(z^2+4xzz'+x^2((z')^2+zz''))+x^2z^4=

=x2z4+2x3z3z+x4z2(z)2+xz2(xz2+x2zz)=x^2z^4+2x^3z^3z'+x^4z^2(z')^2+xz^2(xz^2+x^2zz')


z2+4xzz+x2((z)2+zz)+z2=z2+2xzz+x2(z)2+z2+xzzz^2+4xzz'+x^2((z')^2+zz'')+z^2=z^2+2xzz'+x^2(z')^2+z^2+xzz'

xzz+x2zz=0xzz'+x^2zz''=0

xz(z+xz)=0xz(z'+xz'')=0


z+xz=0z'+xz''=0

z=uz'=u

u+xu=0u+xu'=0

du/u=dx/xdu/u=-dx/x

lnu=lnx+lnc1lnu=-lnx+lnc_1

u=c1/xu=c_1/x

dz=c1dx/xdz=c_1dx/x

z=c1lnx+c2z=c_1lnx+c_2


y(x)=x2(c1lnx+c2)2y(x)=x^2(c_1lnx+c_2)^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS