2x2yy′′+4y2=x2(y′)2+2xyy′
y=x2z2
then:
y=x2z2
y′=2xz2+2x2zz′
y′′=2z2+4xzz′+4xzz′+2x2((z′)2+zz′′)
2x2x2z2(2z2+4xzz′+4xzz′+2x2((z′)2+zz′′))+4x4z4=
=x2(2xz2+2x2zz′)2+2xx2z2(2xz2+2x2zz′)
x2z2(z2+4xzz′+x2((z′)2+zz′′))+x2z4=
=x2z4+2x3z3z′+x4z2(z′)2+xz2(xz2+x2zz′)
z2+4xzz′+x2((z′)2+zz′′)+z2=z2+2xzz′+x2(z′)2+z2+xzz′
xzz′+x2zz′′=0
xz(z′+xz′′)=0
z′+xz′′=0
z′=u
u+xu′=0
du/u=−dx/x
lnu=−lnx+lnc1
u=c1/x
dz=c1dx/x
z=c1lnx+c2
y(x)=x2(c1lnx+c2)2
Comments