Prove:
The following methods are useful for divisibility by 11.
of the digits in the even places. If the result is divisible by 11, then 11|N.
Let's use some facts ('a mod z' means remainder of division of a by z):
"1)\\space10\\space mod\\space 11=-1\\\\\n2)\\space100\\space mod\\space 11=1"
Replacing terms with their remainders of division will not affect on the resulting remainder:
"3)\\space(a+b)_\\space mod\\space z=(a\\space mod\\space z+b)\\space mod\\space z\\\\\n=(a\\space mod\\space z+b\\space mod\\space z)\\space mod\\space z\\\\\n4)\\space(ab)\\space mod\\space z=(a\\space mod\\space z\\cdot b)\\space mod\\space z=\\\\\n=(a\\space mod\\space z\\cdot b\\space mod\\space z)\\space mod\\space z\\\\\n5)\\space(x^p)\\space mod\\space z=(x\\space mod\\space z)^p\\space mod\\space z"
Let "a_i" be digits of number n
n is divisible by 11 if and only if n mod 11 = 0
"n\\space mod\\space 11=\\\\\n(a_0+10a_1+10^2a_2+...+10^ka_k)\\space mod\\space 11=\\\\\n=(a_0+10^2a_2+...+10^{2p}a_{2p}+\\\\\n+10a_1+10^3a_3+...+10^{2q+1}a_{2q+1})\\space mod\\space 11=\\\\\n(a_0+...+(100\\space mod\\space 11)^pa_{2p}+\\\\\n(10\\space mod\\space 11)a_1+...\\\\\n+(10\\space mod\\space 11)^{2q+1}a_{2q+1})\\space mod\\space 11=\\\\\n(a_0+...+a_{2p}-a_1-...-a_{2q+1})\\space mod\\space 11\\\\\nn\\space mod\\space 11=0\\Lrarr\\\\\n\\Lrarr(a_0+...+a_{2p}-(a_1+...+a_{2q+1}))\\space mod\\space 11=0"
Comments
Leave a comment